Advertisement

Correlation between polar surface area and bioferroelectricity in DNA and RNA nucleobases

  • See-Chuan Yam
  • Sharifuddin Md. Zain
  • Vannajan Sanghiran Lee
  • Khian-Hooi Chew
Regular Article

Abstract.

We have performed computational molecular modelling to study the polarization switching and hysteresis loop behaviours of DNA and RNA nucleobases using the PM3 semi-empirical quantum mechanical approaches. All the nucleobases: adenine (A), thymine (T), guanine (G), cytosine (C), and uracil (U) were modelled. Our study indicates that all the nucleobases exhibit a zero-field polarization due to the presence of polar atoms or molecules such as amidogen and carbonyl. The shape of polarization P versus an applied electric field E hysteresis loop is square, implying typical ferroelectrics behaviour. The total energy U as a function of an applied electric field E exhibits a butterfly-like loop. The presence of zero-field polarization and ferroelectrics hysteresis loop behaviours in nucleobases may support the hypothesis of the existence of bioferroelectricity in DNA and RNA. We also found an interesting relationship between the minimum electric field required for switching \( E_{C}\) and the ratio of the topological polar surface area (TPSA) to the total surface area (TSA) of a nucleobase. In particular, the \( E_{C}\) of a nucleobase is inversely proportional to the TPSA/TSA ratio. This work may provide useful information for understanding the possible existence of ferroelectricity in biomaterials.

Graphical abstract

Keywords

Living systems: Biological Matter 

Supplementary material

10189_2018_11696_MOESM1_ESM.pdf (852 kb)
Supplementary material

References

  1. 1.
    G.M. Church, Y. Gao, S. Kosuri, Science 337, 1628 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Erlich, D. Zielinski, Science 355, 950 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    A. Extance, Nature 537, 22 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    R.K. Moyzis, J.M. Buckingham, L.S. Cram, M. Dani, L.L. Deaven, M.D. Jones, J. Meyne, R.L. Ratliff, J.R. Wu, Proc. Natl. Acad. Sci. U.S.A. 85, 6622 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Liu, H.-L. Cai, M. Zelisko, Y. Wang, J. Sun, F. Yan, F. Ma, P. Wang, Q.N. Chen, H. Zheng, X. Meng, P. Sharma, Y. Zhang, J. Li, Proc. Natl. Acad. Sci. U.S.A. 111, E2780 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Y. Wang, M.-J. Chow, N.Q. Chen, F. Ma, Y. Zhang, J. Li, Phys. Rev. Lett. 110, 168101 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    T. Lenz, R. Hummel, I. Katsouras, W.A. Groen, M. Nijemeisland, R. Ruemmler, M.K.E. Schäfer, D.M.d. Leeuw, Appl. Phys. Lett. 111, 133701 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    M.T. Hwang, P.B. Landon, J. Lee, D. Choi, A.H. Mo, G. Glinsky, R. Lal, Proc. Natl. Acad. Sci. U.S.A. 113, 7088 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Altintas, I.E. Tothill, Sens. Actuators B: Chem. 169, 188 (2012)CrossRefGoogle Scholar
  10. 10.
    X.C. Zhou, L.Q. Huang, S.F. Li, Biosens. Bioelectron. 16, 85 (2001)CrossRefGoogle Scholar
  11. 11.
    J. Wang, Anal. Chim. Acta. 469, 63 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    J. Polonsky, P. Douzou, C. Sadron, C. R. Hebd. Seances Acad. Sci. 250, 3414 (1960)Google Scholar
  13. 13.
    A.L. Stanford, R.A. Lorey, Nature 219, 1250 (1968)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Ando, E. Fukada, J. Polym. Sci.: Polym. Phys. Ed. 14, 63 (1976)ADSGoogle Scholar
  15. 15.
    E. Fukada, Y. Ando, J. Polym. Sci. Part A-2: Polym. Phys. 10, 565 (1972)CrossRefGoogle Scholar
  16. 16.
    J. Duchesne, J. Depireux, A. Bertinchamps, N. Cornet, J.M. Van Der Kaa, Nature 188, 405 (1960)ADSCrossRefGoogle Scholar
  17. 17.
    V.K. Yarmarkin, S.G. Shul'man, V.V. Lemanov, Phys. Solid State 51, 1881 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    HyperChem, Tools for Molecular Modeling (Hypercube, Inc., 2002)Google Scholar
  19. 19.
    D. Hadjipavlou-Litina, Curr. Med. Chem. 7, 375 (2000)CrossRefGoogle Scholar
  20. 20.
    P. Ertl, B. Rohde, P. Selzer, J. Med. Chem. 43, 3714 (2000)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    C.S. Tsai, in An Introduction to Computational Biochemistry (John Wiley & Sons, Inc., 2003) p. 315Google Scholar
  23. 23.
    K.M. Khoda, Y. Liu, C. Storey, J. Optimization Theory Appl. 75, 345 (1992)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Klostermeier, M.G. Rudolph, Biophysical Chemistry (CRC Press, Taylor & Francis Group, 2017)Google Scholar
  25. 25.
    G. Tasi, I. Palinko, L. Nyerges, P. Fejes, H. Foerster, J. Chem. Inf. Comput. Sci. 33, 296 (1993)CrossRefGoogle Scholar
  26. 26.
    I. Bdikin, A. Heredia, S.M. Neumayer, V.S. Bystrov, J. Gracio, B.J. Rodriguez, A.L. Kholkin, J. Appl. Phys. 118, 072007 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    R. Santamaria, A. Vázquez, J. Comput. Chem. 15, 981 (1994)CrossRefGoogle Scholar
  28. 28.
    V.S. Bystrov, E. Seyedhosseini, I. Bdikin, S. Kopyl, S.M. Neumayer, J. Coutinho, A.L. Kholkin, Ferroelectrics 475, 107 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Pranitha, P. Lakshmi, Iran. J. Pharm. Sci. 10, 47 (2014)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • See-Chuan Yam
    • 1
  • Sharifuddin Md. Zain
    • 1
  • Vannajan Sanghiran Lee
    • 1
  • Khian-Hooi Chew
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Physics, Centre for Theoretical and Computational Physics, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations