Advertisement

Enhancement of mixing by rodlike polymers

  • Stefano Musacchio
  • Massimo Cencini
  • Emmanuel L. C. VI M. Plan
  • Dario Vincenzi
Regular Article
  • 41 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

We study the mixing of a passive scalar field dispersed in a solution of rodlike polymers in two dimensions, by means of numerical simulations of a rheological model for the polymer solution. The flow is driven by a parallel sinusoidal force (Kolmogorov flow). Although the Reynolds number is lower than the critical value for inertial instabilities, the rotational dynamics of the polymers generates a chaotic flow similar to the so-called elastic-turbulence regime observed in extensible polymer solutions. The temporal decay of the variance of the scalar field and its gradients shows that this chaotic flow strongly enhances mixing.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    A. Groisman, V. Steinberg, Nature 405, 53 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    A. Groisman, V. Steinberg, Nature 410, 905 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    E.L.C. VI M. Plan, S. Musacchio, D. Vincenzi, Phys. Rev. E 96, 053108 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    S. Berti, A. Bistagnino, G. Boffetta, A. Celani, S. Musacchio, Phys. Rev. E 77, 055306 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1988)Google Scholar
  7. 7.
    R. Sureshkumar, A.N. Beris, J. Non-Newton. Fluid Mech. 60, 53 (1995)CrossRefGoogle Scholar
  8. 8.
    Y. Amarouchene, D. Bonn, H. Kellay, T.S. Lo, V.S. L’vov, I. Procaccia, Phys. Fluids 20, 065108 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    I. Procaccia, V.S. L’vov, R. Benzi, Rev. Mod. Phys. 80, 225 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Musacchio, G. Boffetta, Phys. Rev. E 89, 023004 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    E. Balkovsky, A. Fouxon, Phys. Rev. E 60, 4164 (1999)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    P.H. Haynes, J. Vanneste, Phys. Fluids 17, 097103 (2005)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Sukhatme, R.T. Pierrehumbert, Phys. Rev. E 66, 056302 (2002)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Stefano Musacchio
    • 1
  • Massimo Cencini
    • 2
    • 3
  • Emmanuel L. C. VI M. Plan
    • 4
  • Dario Vincenzi
    • 1
  1. 1.Université Côte d’AzurCNRS, LJADNiceFrance
  2. 2.Istituto dei Sistemi ComplessiCNRRomaItaly
  3. 3.INFNSezione di Roma Tor VergataRomaItaly
  4. 4.Rudolf Peierls Centre for Theoretical PhysicsUniversity of Oxford3PUUK

Personalised recommendations