Advertisement

Controlling breath figure patterns on PDMS by concentration variation of ethanol-methanol binary vapors

  • K. Nilavarasi
  • V. Madhurima
Regular Article

Abstract.

In this paper, the self-assembly of condensed droplets on smooth and constrained surfaces under saturated vapor atmosphere of ethanol and methanol binary system is reported. Hexagonally ordered array of pores are obtained on smooth surfaces with saturated vapors of binary liquids without the assistance of any additives. The results show that the addition of a small amount of ethanol to methanol plays a role very similar to that of surface active agents in inducing the formation of a regular droplet array. The effect of constraints on a self-assembled droplet pattern such as the movement of the contact line and the depinning of the contact line is also investigated. It is observed that the pore size, pore shape, pore depth and ring diameter are influenced by the atmosphere of binary vapors in addition to the commonly held attribution to the surface tension of the solvent. Contact angle studies of the patterned substrates show hydrophobicity with high adhesiveness and transitions between the Wenzel and Cassie impregnating state over the entire concentration region.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

Supplementary material

10189_2018_11691_MOESM1_ESM.pdf (1.5 mb)
Supplementary material

References

  1. 1.
    H. Bai, C. Du, A.J. Zhang, L. Li, Angew. Chem., Int. Ed. 52, 12240 (2013)CrossRefGoogle Scholar
  2. 2.
    Jianliang Gong, Bingang Xu, Xiaoming Taoa, Lei Li, Phys. Chem. Chem. Phys. 18, 13629 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Hernandez-Guerrero, M.H. Stenzel, Polym. Chem. 3, 563 (2012)CrossRefGoogle Scholar
  4. 4.
    U.H.F. Bunz, Adv. Mater. 18, 973 (2006)CrossRefGoogle Scholar
  5. 5.
    Jianyun Ding, Aijuan Zhang, Hua Bai, Lei Li, Jian Lia, Zhi Ma, Soft Matter 9, 506 (2013)CrossRefADSGoogle Scholar
  6. 6.
    Lei Li, Caikang Chen, Aijuan Zhang, Xinyu Liu, Kun Cui, Jin Huang, Zhi Mab, Zhaohui Han, J. Colloid Interface Sci. 331, 446 (2009)CrossRefADSGoogle Scholar
  7. 7.
    Xiaofeng Li, Shuaixia Tan, Liang Zhang, Ning Zhao, Jian Xu, J. Colloid Interface Sci. 350, 253 (2010)CrossRefADSGoogle Scholar
  8. 8.
    Lei Li, Yawen Zhong, Jian Li, Jianliang Gong, Yi Ben, Jin Xu, Xianping Chen, Zhi Ma, J. Colloid Interface Sci. 342, 192 (2010)CrossRefADSGoogle Scholar
  9. 9.
    P. Escale, L. Rubatat, L. Billon, M. Save, Eur. Polym. J. 48, 1001 (2012)CrossRefGoogle Scholar
  10. 10.
    G. Widawski, M. Rawiso, B. Francois, Nature 369, 387 (1994)CrossRefADSGoogle Scholar
  11. 11.
    H. Yabu, M. Tanaka, K. Ijiro, M. Shimomura, Langmuir 19, 6297 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Bolognesi, C. Mercoliano, S. Yunus, M. Civardi, D. Comoretto, A. Turturro, Langmuir 21, 3480 (2005)CrossRefGoogle Scholar
  13. 13.
    R.H. Dong, J.L. Yan, H.M. Ma, Y. Fang, J.C. Hao, Langmuir 27, 9052 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Fukhira, H. Yabu, K. Ijiro, M. Shimomura, Soft Matter 5, 2037 (2009)CrossRefADSGoogle Scholar
  15. 15.
    E. Servoli, G.A. Ruffo, C. Migliaresi, Polymer 51, 2337 (2010)CrossRefGoogle Scholar
  16. 16.
    J.L. Gong, B.G. Xu, X.M. Tao, RSC Adv. 5, 14341 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Jiang, J. Gu, Y. Shen, S. Wang, X. Tian, J. Appl. Polym. Sci. 119, 3329 (2011)CrossRefGoogle Scholar
  18. 18.
    M.H. Stenzel, C. Barner-Kowollik, T.P. Davis, J. Polym. Sci. A: Polym. Chem. 44, 2363 (2006)CrossRefADSGoogle Scholar
  19. 19.
    X.P. Xiong, M.F. Lin, W.W. Zou, X.Y. Liu, React. Funct. Polym. 71, 964 (2011)CrossRefGoogle Scholar
  20. 20.
    Xiaopeng Xiong, Weiwei Zou, Zhaoju Yu, Jiangjiang Duan, Xingjun Liu, Songhua Fan, Hua Zhou, Macromolecules 42, 9351 (2009)CrossRefADSGoogle Scholar
  21. 21.
    Weibin Bai, Xueqing Xiao, Lifang Cai, Yanlian Xu, Jinhuo Lin, React. Funct. Polym. 76, 13 (2014)CrossRefGoogle Scholar
  22. 22.
    Aijuan Zhang, Can Du, Hua BAi, Yange Wang, Jinawei Wang, Lei Li, ACS Appl. Mater. Interfaces 6, 8921 (2014)CrossRefGoogle Scholar
  23. 23.
    K. Nilavarasi, Thejus R. Kartha, V. Madhurima, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 188, 301 (2018)CrossRefADSGoogle Scholar
  24. 24.
    J.S. Park, S.H. Lee, T.H. Han, S.O. Kim, Adv. Funct. Mater 17, 2315 (2007)CrossRefGoogle Scholar
  25. 25.
    Feng Chao Wang, Heng An Wu, Sci. Rep. 5, 17521 (2015)CrossRefADSGoogle Scholar
  26. 26.
    V.P. Carey, Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation in Heat Transfer Equipment, 2nd edition (Taylor and Francis, 2007)Google Scholar
  27. 27.
    J. Boreyko, C. Chen, Phys. Rev. Lett. 103, 184501 (2009)CrossRefADSGoogle Scholar
  28. 28.
    Adam T. Paxson, Kripa K. Varanasi, Nat. Commun. 4, 1492 (2013)CrossRefADSGoogle Scholar
  29. 29.
    Pedro Gea-Jodar, Miguel Angel Rodriguez-Valverde, Miguel Angel Cabrerizo Vilchez, in Contact Angle, Wettability and Adhesion, Vol. 4 (VSP/Brill, Leiden, 2006) pp. 183--202Google Scholar
  30. 30.
    M.V. Berry, Phys. Educ. 6, 79 (1971)CrossRefADSGoogle Scholar
  31. 31.
    A. Marchand, J.H. Weijs, J.H. Snoeijer, B. Andreotti, Am. J. Phys. 79, 999 (2011)CrossRefADSGoogle Scholar
  32. 32.
    F.C. Wang, H.A. Wu, Soft Matter 9, 5703 (2013)CrossRefADSGoogle Scholar
  33. 33.
    E. Dietrich, E.S. Kooij, X. Zhang, H.J. Znadvliet, D. Lohse, Langmuir 31, 4696 (2015)CrossRefGoogle Scholar
  34. 34.
    J. Zhang, F. Mullar Plathe, F. Leroy, Langmuir 31, 7544 (2015)CrossRefGoogle Scholar
  35. 35.
    D.B. Macleod, Trans. Faraday Soc. 19, 38 (1923)CrossRefGoogle Scholar
  36. 36.
    T. Young, Philos. Trans. R. Soc. London 95, 65 (1805)CrossRefGoogle Scholar
  37. 37.
    Hnayu Yin, David N. Sibley, Uwe Thiele, Andrew J. Archer, Films, layers and droplets: The effect of near-wall fluid structure on spreading dynamics, arXiv:1611.00390v1Google Scholar
  38. 38.
    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)CrossRefADSGoogle Scholar
  39. 39.
    S. Ramos, A. Tanguy, Eur. Phys. J. E 19, 433 (2006)CrossRefGoogle Scholar
  40. 40.
    C.W. Extrand, Langmuir 19, 3793 (2003)CrossRefGoogle Scholar
  41. 41.
    Deniz Ertag, Mehran Kardar, Phys. Rev. E 49, R2532 (1994)CrossRefADSGoogle Scholar
  42. 42.
    Jacco H. Snoeijer, Bruno Andreotti, Annu. Rev. Fluid Mech. 45, 269 (2013)CrossRefADSGoogle Scholar
  43. 43.
    A. Marmur, Colloids Surf. A 136, 209 (1998)CrossRefGoogle Scholar
  44. 44.
    X. Zhang, Y. Mi, Langmuir 25, 3212 (2009)CrossRefGoogle Scholar
  45. 45.
    F. Brochard Wyart, P.G. de Gennes, Adv. Colloid Interface Sci. 39, 1 (1992)CrossRefGoogle Scholar
  46. 46.
    G.R. Duursmaa, K. Sefianeb, S. David, Chem. Eng. Res. Des. 88, 737 (2010)CrossRefGoogle Scholar
  47. 47.
    Robert N. Wenzel, Ind. Eng. Chem. 28, 988 (1938)CrossRefGoogle Scholar
  48. 48.
    Edward Bormashenko, Philos. Trans. R. Soc. A 368, 4695 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, School of Basic and Applied SciencesCentral University of Tamil NaduThiruvarurIndia

Personalised recommendations