Advertisement

On the effect of the thermostat in non-equilibrium molecular dynamics simulations

  • José Ruiz-Franco
  • Lorenzo Rovigatti
  • Emanuela Zaccarelli
Regular Article
  • 17 Downloads
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems

Abstract.

The numerical investigation of the statics and dynamics of systems in non-equilibrium in general, and under shear flow in particular, has become more and more common. However, not all the numerical methods developed to simulate equilibrium systems can be successfully adapted to out-of-equilibrium cases. This is especially true for thermostats. Indeed, even though thermostats developed to work under equilibrium conditions sometimes display good agreement with rheology experiments, their performance rapidly degrades beyond weak dissipation and small shear rates. Here we focus on gauging the relative performances of three thermostats, Langevin, dissipative particle dynamics, and Bussi-Donadio-Parrinello under varying parameters and external conditions. We compare their effectiveness by looking at different observables and clearly demonstrate that choosing the right thermostat (and its parameters) requires a careful evaluation of, at least, temperature, density and velocity profiles. We also show that small modifications of the Langevin and DPD thermostats greatly enhance their performance in a wide range of parameters.

Graphical abstract

Keywords

Topical issue: Advances in Computational Methods for Soft Matter Systems 

References

  1. 1.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 2017)Google Scholar
  2. 2.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 (Academic Press, 2001)Google Scholar
  3. 3.
    M. Ripoll, K. Mussawisade, R. Winkler, G. Gompper, Phys. Rev. E 72, 016701 (2005)CrossRefADSGoogle Scholar
  4. 4.
    R. Kapral, Adv. Chem. Phys. 140, 89 (2008)Google Scholar
  5. 5.
    G. Gompper, T. Ihle, D. Kroll, R. Winkler, in Advanced Computer Simulation Approaches for Soft Matter Sciences III (Springer, 2009) pp. 1--87Google Scholar
  6. 6.
    H.J. Berendsen, J.v. Postma, W.F. van Gunsteren, A. DiNola, J. Haak, J. Chem. Phys. 81, 3684 (1984)CrossRefADSGoogle Scholar
  7. 7.
    G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)CrossRefADSGoogle Scholar
  8. 8.
    H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)CrossRefADSGoogle Scholar
  9. 9.
    S. Nosé, J. Chem. Phys. 81, 511 (1984)CrossRefADSGoogle Scholar
  10. 10.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985)CrossRefADSGoogle Scholar
  11. 11.
    S.D. Stoyanov, R.D. Groot, J. Chem. Phys. 122, 114112 (2005)CrossRefADSGoogle Scholar
  12. 12.
    G.J. Martyna, M.L. Klein, M. Tuckerman, J. Chem. Phys. 97, 2635 (1992)CrossRefADSGoogle Scholar
  13. 13.
    T. Schneider, E. Stoll, Phys. Rev. B 17, 1302 (1978)CrossRefADSGoogle Scholar
  14. 14.
    B. Dünweg, J. Chem. Phys. 99, 6977 (1993)CrossRefADSGoogle Scholar
  15. 15.
    P. Hoogerbrugge, J. Koelman, Europhys. Lett. 19, 155 (1992)CrossRefADSGoogle Scholar
  16. 16.
    P. Espanol, P. Warren, Europhys. Lett. 30, 191 (1995)CrossRefADSGoogle Scholar
  17. 17.
    C. Lowe, Europhys. Lett. 47, 145 (1999)CrossRefADSGoogle Scholar
  18. 18.
    G. Besold, I. Vattulainen, M. Karttunen, J.M. Polson, Phys. Rev. E 62, R7611 (2000)CrossRefADSGoogle Scholar
  19. 19.
    T. Shardlow, SIAM J. Sci. Comput. 24, 1267 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    E. Peters, Europhys. Lett. 66, 311 (2004)CrossRefADSGoogle Scholar
  21. 21.
    B. Leimkuhler, X. Shang, J. Comput. Phys. 280, 72 (2015)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    M. Ellero, P. Espanol, Appl. Math. Mech. 39, 103 (2018)CrossRefGoogle Scholar
  23. 23.
    X. Fan, N. Phan-Thien, S. Chen, X. Wu, T. Yong Ng, Phys. Fluids 18, 063102 (2006)CrossRefADSGoogle Scholar
  24. 24.
    N. Phan-Thien, N. Mai-Duy, Understanding Viscoelasticity: An Introduction to Rheology (Springer, 2017)Google Scholar
  25. 25.
    P. Español, Europhys. Lett. 39, 605 (1997)CrossRefADSGoogle Scholar
  26. 26.
    P. Espanol, Phys. Rev. E 57, 2930 (1998)CrossRefADSGoogle Scholar
  27. 27.
    J.B. Avalos, A. Mackie, Europhys. Lett. 40, 141 (1997)CrossRefADSGoogle Scholar
  28. 28.
    M. Liu, G. Liu, Archiv. Comput. Methods Eng. 17, 25 (2010)CrossRefGoogle Scholar
  29. 29.
    Z.-B. Wang, R. Chen, H. Wang, Q. Liao, X. Zhu, S.-Z. Li, Appl. Math. Model. 40, 9625 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Espanol, M. Revenga, Phys. Rev. E 67, 026705 (2003)CrossRefADSGoogle Scholar
  31. 31.
    A. Vazquez-Quesada, M. Ellero, J. Non-Newton. Fluid Mech. 233, 37 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Whittle, K.P. Travis, J. Chem. Phys. 132, 124906 (2010)CrossRefADSGoogle Scholar
  33. 33.
    A. Boromand, S. Jamali, J.M. Maia, Soft Matter 13, 458 (2017)CrossRefADSGoogle Scholar
  34. 34.
    G. Bussi, M. Parrinello, Comput. Phys. Commun. 179, 26 (2008)CrossRefADSGoogle Scholar
  35. 35.
    B. Lander, U. Seifert, T. Speck, J. Chem. Phys. 138, 224907 (2013)CrossRefADSGoogle Scholar
  36. 36.
    T. Mohorič, J. Dobnikar, J. Horbach, Soft Matter 12, 3142 (2016)CrossRefADSGoogle Scholar
  37. 37.
    M. Kohl, M. Schmiedeberg, Eur. Phys. J. E 40, 71 (2017)CrossRefGoogle Scholar
  38. 38.
    T. Soddemann, B. Dünweg, K. Kremer, Phys. Rev. E 68, 046702 (2003)CrossRefADSGoogle Scholar
  39. 39.
    J. Zausch, J. Horbach, M. Laurati, S.U. Egelhaaf, J.M. Brader, T. Voigtmann, M. Fuchs, J. Phys.: Condens. Matter 20, 404210 (2008)Google Scholar
  40. 40.
    G.P. Shrivastav, P. Chaudhuri, J. Horbach, Phys. Rev. E 94, 042605 (2016)CrossRefADSGoogle Scholar
  41. 41.
    J. Zausch, J. Horbach, P. Virnau, K. Binder, J. Phys.: Condens. Matter 22, 104120 (2010)ADSGoogle Scholar
  42. 42.
    C. Pastorino, T. Kreer, M. Müller, K. Binder, Phys. Rev. E 76, 026706 (2007)CrossRefADSGoogle Scholar
  43. 43.
    P.S. Doyle, E.S. Shaqfeh, A.P. Gast, Phys. Rev. Lett. 78, 1182 (1997)CrossRefADSGoogle Scholar
  44. 44.
    X. Yong, L.T. Zhang, Phys. Rev. E 82, 056313 (2010)CrossRefADSGoogle Scholar
  45. 45.
    J.-L. Barrat, L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999)CrossRefADSGoogle Scholar
  46. 46.
    N.V. Priezjev, S.M. Troian, J. Fluid Mech. 554, 25 (2006)CrossRefADSGoogle Scholar
  47. 47.
    A. Niavarani, N.V. Priezjev, Phys. Rev. E 81, 011606 (2010)CrossRefADSGoogle Scholar
  48. 48.
    X. Yong, L.T. Zhang, J. Chem. Phys. 138, 084503 (2013)CrossRefADSGoogle Scholar
  49. 49.
    B. Leimkuhler, X. Shang, J. Comput. Phys. 324, 174 (2016)MathSciNetCrossRefADSGoogle Scholar
  50. 50.
    X. Shang, M. Kroger, B. Leimkuhler, Soft Matter 13, 8565 (2017)CrossRefADSGoogle Scholar
  51. 51.
    A. Lees, S. Edwards, J. Phys. C: Solid State Phys. 5, 1921 (1972)CrossRefADSGoogle Scholar
  52. 52.
    G.P. Morriss, D.J. Evans, Statistical Mechanics of Nonequilbrium Liquids (ANU Press, 2013)Google Scholar
  53. 53.
    F. Zhang, D.J. Searles, D.J. Evans, J.S. den Toom Hansen, D.J. Isbister, J. Chem. Phys. 111, 18 (1999)CrossRefADSGoogle Scholar
  54. 54.
    G. Pan, J.F. Ely, C. McCabe, D.J. Isbister, J. Chem. Phys. 122, 094114 (2005)CrossRefADSGoogle Scholar
  55. 55.
    B. Todd, P.J. Daivis, Mol. Simul. 33, 189 (2007)CrossRefGoogle Scholar
  56. 56.
    D.A. Sivak, J.D. Chodera, G.E. Crooks, J. Phys. Chem. B 118, 6466 (2014)CrossRefGoogle Scholar
  57. 57.
    D.L. Ermak, J. McCammon, J. Chem. Phys. 69, 1352 (1978)CrossRefADSGoogle Scholar
  58. 58.
    A. Brünger, C.L. Brooks, M. Karplus, Chem. Phys. Lett. 105, 495 (1984)CrossRefADSGoogle Scholar
  59. 59.
    R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)CrossRefADSGoogle Scholar
  60. 60.
    A. Moshfegh, A. Jabbarzadeh, Soft Mater. 13, 106 (2015)CrossRefGoogle Scholar
  61. 61.
    B. Dünweg, W. Paul, Int. J. Mod. Phys. C 2, 817 (1991)CrossRefADSGoogle Scholar
  62. 62.
    M. Cloitre, High Solid Dispersions, Vol. 236 (Springer, 2010)Google Scholar
  63. 63.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Elsevier, 1990)Google Scholar
  64. 64.
    A.M. Puertas, C. De Michele, F. Sciortino, P. Tartaglia, E. Zaccarelli, J. Chem. Phys. 127, 144906 (2007)CrossRefADSGoogle Scholar
  65. 65.
    C. Junghans, M. Praprotnik, K. Kremer, Soft Matter 4, 156 (2008)CrossRefADSGoogle Scholar
  66. 66.
    H.-J. Qian, C.C. Liew, F. Müller-Plathe, Phys. Chem. Chem. Phys. 11, 1962 (2009)CrossRefGoogle Scholar
  67. 67.
    E. Koopman, C. Lowe, J. Chem. Phys. 124, 204103 (2006)CrossRefADSGoogle Scholar
  68. 68.
    G. Bussi, T. Zykova-Timan, M. Parrinello, J. Chem. Phys. 130, 074101 (2009)CrossRefADSGoogle Scholar
  69. 69.
    K. Kang, H. Kriegs, J. Dhont, O. Danko, J. Marakis, D. Vlassopoulos, Phys. Rev. Fluids 2, 043301 (2017)CrossRefADSGoogle Scholar
  70. 70.
    A. Chatterjee, Mol. Simul. 33, 1233 (2007)CrossRefGoogle Scholar
  71. 71.
    J.-L. Barrat, L. Berthier, Phys. Rev. E 63, 012503 (2000)CrossRefADSGoogle Scholar
  72. 72.
    F. Varnik, J. Chem. Phys. 125, 164514 (2006)CrossRefADSGoogle Scholar
  73. 73.
    J. Zausch, Dynamics, Rheology and Critical Properties of Colloidal Fluid Mixtures: Molecular Dynamics Studies in Equilibrium and Under, PhD Thesis, Universität Mainz (2009)Google Scholar
  74. 74.
    L. Verlet, Phys. Rev. 159, 98 (1967)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • José Ruiz-Franco
    • 1
  • Lorenzo Rovigatti
    • 1
    • 2
  • Emanuela Zaccarelli
    • 1
    • 2
  1. 1.Dipartimento di FisicaSapienza Università di RomaRomaItaly
  2. 2.CNR Institute for Complex Systems (ISC)Uos SapienzaRomaItaly

Personalised recommendations