Distinctive diffusive properties of swimming planktonic copepods in different environmental conditions

  • Raffaele Pastore
  • Marco Uttieri
  • Giuseppe Bianco
  • Maurizio Ribera d’Alcalá
  • Maria Grazia Mazzocchi
Regular Article
Part of the following topical collections:
  1. Fluids and Structures: Multi-scale coupling and modeling


Suspensions of small planktonic copepods represent a special category in the realm of active matter, as their size falls within the range of colloids, while their motion is so complex that it cannot be rationalized according to basic models of self-propelled particles. Indeed, the wide range of individual variability and swimming patterns resemble the behaviour of much larger animals. By analysing hundreds of three-dimensional trajectories of the planktonic copepod Clausocalanus furcatus, we investigate the possibility of detecting how the motion of this species is affected by different external conditions, such as the presence of food and the effect of gravity. While this goal is hardly achievable by direct inspection of single organism trajectories, we show that this is possible by focussing on simple average metrics commonly used to characterize colloidal suspensions, such as the mean square displacement and the dynamic correlation functions. We find that the presence of food leads to the onset of a clear localization that separates a short-time ballistic from a long-time diffusive regime. Such a benchmark reflects the tendency of C. furcatus to remain temporally feeding in a limited space and disappears when food is absent. Localization is clearly evident in the horizontal plane, but is negligible in the vertical direction, due to the effect of gravity. Our results suggest that simple average descriptors may provide concise and useful information on the swimming properties of planktonic copepods, even though single organism behaviour is strongly heterogeneous.

Graphical abstract


Topical issue: Fluids and Structures: Multi-scale coupling and modeling 


  1. 1.
    D. Tilman, P.M. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, Vol. 30 (Princeton University Press, 1997)Google Scholar
  2. 2.
    M. Begon, C.R. Townsend, J.L. Harper, Ecology: From Individuals to Ecosystems (Wiley-Blackwell, 2005) ISBN: 978-1-405-11117-1Google Scholar
  3. 3.
    A. Okubo, Diffusion and Ecological Problems: Mathematical Models (Springer, 1980) ISBN: 9783540096207Google Scholar
  4. 4.
    J.G. Skellam, Biometrika 38, 196 (1951)MathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Von Frisch, The Dance Language and Orientation of Bees (Harvard University Press, 1967)Google Scholar
  6. 6.
    G. Bianco, V. Botte, L. Dubroca, M. Ribera d’Alcalá, M.G. Mazzocchi, PloS ONE 8, e67640 (2013)CrossRefADSGoogle Scholar
  7. 7.
    R. Nathan, W.M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz, P.E. Smouse, Proc. Natl. Acad. Sci. U.S.A. 105, 19052 (2008)CrossRefADSGoogle Scholar
  8. 8.
    P.G. Verity, V. Smetacek, Mar. Ecol. Prog. Ser. 130, 277 (1996)CrossRefADSGoogle Scholar
  9. 9.
    J. Yen, Biol. Bull. 198, 213 (2000)CrossRefGoogle Scholar
  10. 10.
    M.G. Mazzocchi, G.A. Paffenhöfer, J. Plankton Res. 21, 1501 (1999)CrossRefGoogle Scholar
  11. 11.
    T. Kiørboe, A Mechanistic Approach to Plankton Ecology (Princeton University Press, 2008)Google Scholar
  12. 12.
    A.W. Visser, T. Kiørboe, Oecologia 148, 538 (2006)CrossRefADSGoogle Scholar
  13. 13.
    O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Rev. Mod. Phys. 83, 81 (2011)CrossRefADSGoogle Scholar
  14. 14.
    M. Chupeau, O. Bénichou, R. Voituriez, Nat. Phys. 11, 844 (2015)CrossRefGoogle Scholar
  15. 15.
    O. Bénichou, M. Coppey, M. Moreau, P. Suet, R. Voituriez, Phys. Rev. Lett. 94, 198101 (2005)CrossRefADSGoogle Scholar
  16. 16.
    O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Phys. Rev. E 74, 020102 (2006)CrossRefGoogle Scholar
  17. 17.
    M. Webber, J. Roff, Mar. Biol. 123, 467 (1995)CrossRefGoogle Scholar
  18. 18.
    I. Siokou Frangou, E. Christou, N. Fragopoulu, M.G. Mazzocchi, Oceanolica Acta 20, 537 (1997)Google Scholar
  19. 19.
    À. Peralba, M.G. Mazzocchi, ICES J. Mar. Sci. 61, 645 (2004)CrossRefGoogle Scholar
  20. 20.
    M.G. Mazzocchi, M. Ribera d’Alcalá, ICES J. Mar. Sci. 52, 679 (1995)CrossRefGoogle Scholar
  21. 21.
    M.G. Mazzocchi, P. Licandro, L. Dubroca, I. Di Capua, V. Saggiomo, J. Plankton Res. 33, 1163 (2011)CrossRefGoogle Scholar
  22. 22.
    M.G. Mazzocchi, L. Dubroca, C. García-Comas, I. Di Capua, M. Ribera d’Alcalá, Prog. Oceanogr. 97, 135 (2012)CrossRefADSGoogle Scholar
  23. 23.
    M. Uttieri, G.A. Paffenhöfer, M.G. Mazzocchi, Mar. Biol. 153, 925 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Uttieri, E.R. Brown, G.A. Boxshall, M.G. Mazzocchi, J. Marine Biol. Assoc. U.K. 88, 535 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Candelier, A. Widmer-Cooper, J.K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell, D.R. Reichman, Phys. Rev. Lett. 105, 135702 (2010)CrossRefADSGoogle Scholar
  26. 26.
    G. Bianco, P. Mariani, A.W. Visser, M.G. Mazzocchi, S. Pigolotti, J. R. Soc. Interface 11, 20140164 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Zarubin, V. Farstey, A. Wold, S. Falk-Petersen, A. Genin, PloS ONE 9, e92935 (2014)CrossRefADSGoogle Scholar
  28. 28.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)CrossRefADSGoogle Scholar
  29. 29.
    A. Cavagna, Phys. Rep. 476, 51 (2009)CrossRefADSGoogle Scholar
  30. 30.
    E.R. Weeks, D. Weitz, Phys. Rev. Lett. 89, 095704 (2002)CrossRefADSGoogle Scholar
  31. 31.
    R. Pastore, G. Pesce, A. Sasso, M. Pica Ciamarra, J. Phys. Chem. Lett. 8, 1562 (2017)CrossRefGoogle Scholar
  32. 32.
    R. Pastore, A. Coniglio, A. de Candia, A. Fierro, M.P. Ciamarra, J. Stat. Mech.: Theory Exp. 2016, 054050 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Pastore, A. Coniglio, M.P. Ciamarra, Soft Matter 11, 7214 (2015)CrossRefADSGoogle Scholar
  34. 34.
    F. Bartumeus, Fractals 15, 151 (2007)CrossRefGoogle Scholar
  35. 35.
    H. Ardeshiri, F. Schmitt, S. Souissi, F. Toschi, E. Calzavarini, J. Plankton Res. 39, 878 (2017)CrossRefGoogle Scholar
  36. 36.
    Y. Meroz, I.M. Sokolov, Phys. Rep. 573, 1 (2015)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    C. Malinverno, S. Corallino, F. Giavazzi, M. Bergert, Q. Li, M. Leoni, A. Disanza, E. Frittoli, A. Oldani, E. Martini et al., Nat. Mater. 16, 587 (2017)CrossRefADSGoogle Scholar
  38. 38.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)CrossRefADSGoogle Scholar
  39. 39.
    L. Janssen, A. Kaiser, H. Löwen, Sci. Rep. 7, 5667 (2017)CrossRefADSGoogle Scholar
  40. 40.
    N. Gravish, G. Gold, A. Zangwill, M.A. Goodisman, D.I. Goldman, Soft Matter 11, 6552 (2015)CrossRefADSGoogle Scholar
  41. 41.
    M. Uttieri, L. Sabia, D. Cianelli, J. Strickler, E. Zambianchi, J. Mar. Syst. 81, 112 (2010)CrossRefADSGoogle Scholar
  42. 42.
    B. Nilsson, H.H. Jakobsen, P. Stief, G. Drillet, B.W. Hansen, Aquacult. Rep. 6, 35 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Raffaele Pastore
    • 1
    • 2
  • Marco Uttieri
    • 3
    • 4
  • Giuseppe Bianco
    • 5
  • Maurizio Ribera d’Alcalá
    • 3
  • Maria Grazia Mazzocchi
    • 3
  1. 1.Department of Chemical, Materials and Production EngineeringUniversità di Napoli Federico IINapoliItaly
  2. 2.CNR-SPINNapoliItaly
  3. 3.Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNapoliItaly
  4. 4.CoNISMa (Consorzio Nazionale Interuniversitario per le Scienze del Mare)RomaItaly
  5. 5.Department of BiologyLund UniversityLundSweden

Personalised recommendations