Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores

  • Monasadat Talarimoghari
  • Gerhard Baaken
  • Ralf Hanselmann
  • Jan C. Behrends
Regular Article
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)


We use two pore-forming proteins, alpha-hemolysin and aerolysin, to compare the polymer size-dependence of ionic current block by two types of ethyleneglycol polymers: 1) linear and 2) 3-arm star poly(ethylene glycol), both applied as a polydisperse mixture of average mass 1kDa under high salt conditions. The results demonstrate that monomer size sensitivity, as known for linear PEGs, is conserved for the star polymers with only subtle differences in the dependence of the residual conductance on monomer number. To explain this absence of a dominant effect of polymer architecture, we propose that PEG adsorbs to the inner pore wall in a collapsed, salted-out state, likely due to the effect of hydrophobic residues in the pore wall on the availability of water for hydration.

Graphical abstract


Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 


  1. 1.
    J.M. Harris (Editor), Poly(Ethylene Glycol) Chemistry (Plenum Press, New York, 1992)Google Scholar
  2. 2.
    S. Zalipsky, J.M. Harris (Editors), Poly(ethyleneglycol), Chemistry and Biological Applications, ACS Symposium Series, Vol. 680 (ACS, Washington DC, 1997)Google Scholar
  3. 3.
    K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Angew. Chem. Int. Ed. 49, 6288 (2010)CrossRefGoogle Scholar
  4. 4.
    J.J. Kasianowicz, A.K. Balijepalli, J. Ettedgui, J.H. Forstater, H. Wang, H. Zhang, J.W.F. Robertson, Biochim. Biophys. Acta - Biomembranes 1858, 593 (2016)CrossRefGoogle Scholar
  5. 5.
    O.V. Krasilnikov, R.Z. Sabirov, V.I. Ternovsky, P.G. Merzliak, J.N. Muratkhodjaev, FEMS Microbiol. Immunol. 105, 93 (1992)CrossRefGoogle Scholar
  6. 6.
    P.G. Merzlyak, L.N. Yuldasheva, C.G. Rodrigues, C.M.M. Carneiro, O.V. Krasilnikov, S.M. Bezrukov, Biophys. J. 77, 3023 (1999)CrossRefGoogle Scholar
  7. 7.
    O.V. Krasilnikov, in Structure and Dynamics of Confined Polymers, edited by J.J. Kasianowicz, M.S.Z. Kellermayer, D.W. Deamer (Kluwer, Dorderecht, 2002)Google Scholar
  8. 8.
    S.M. Bezrukov, I. Vodyanoy, R.A. Brutyan, J.J. Kasianowicz, Macromolecules 29, 8517 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    L. Movileanu, S. Cheley, H. Bayley, Biophys. J. 85, 897 (2003)CrossRefGoogle Scholar
  10. 10.
    O.V. Krasilnikov, C. Rodrigues, S. Bezrukov, Phys. Rev. Lett. 97, 018301 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J.W.F. Robertson, C.G. Rodrigues, V.M. Stanford, K.A. Rubinson, O.V. Krasilnikov, J.J. Kasianowicz, Proc. Natl. Acad. Sci. U.S.A. 104, 8207 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    C.G. Rodrigues, D.C. Machado, S.F. Chevtchenko, O.V. Krasilnikov, Biophys. J. 95, 5186 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    G. Baaken, N. Ankri, A.-K. Schuler, J. Rühe, J.C. Behrends, ACS Nano 5, 8080 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Zheng, G. Baaken, M. Vellinger, J.C. Behrends, J. Rühe, Sens. Actuators B 205, 268 (2014)CrossRefGoogle Scholar
  15. 15.
    J.M. del Rio Martinez, E. Zaitseva, S. Petersen, G. Baaken, J.C. Behrends, Small 11, 119 (2015)CrossRefGoogle Scholar
  16. 16.
    F. Piguet, H. Ouldali, F. Discala, M.-F. Breton, J.C. Behrends, J. Pelta, A. Oukhaled, Sci. Rep. 6, 38675 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    G. Baaken, I. Halimeh, L. Bacri, J. Pelta, A. Oukhaled, J.C. Behrends, ACS Nano 9, 6443 (2015)CrossRefGoogle Scholar
  18. 18.
    J.E. Reiner, J.J. Kasianowicz, B.J. Nablo, J.W.F. Robertson, Proc. Natl. Acad. Sci. U.S.A. 107, 12080 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A. Balijepalli, J.W.F. Robertson, J.E. Reiner, J.J. Kasianowicz, R.W. Pastor, J. Am. Chem. Soc. 135, 7064 (2013)CrossRefGoogle Scholar
  20. 20.
    C.D. Heyes, J. Groll, M. Möller, G.U. Nienhaus, Mol. BioSyst. 3, 419 (2007)CrossRefGoogle Scholar
  21. 21.
    G. Lapienis, Prog. Polym. Sci. 34, 852 (2009)CrossRefGoogle Scholar
  22. 22.
    T.A. Orofino, Polymer 2, 305 (1961)CrossRefGoogle Scholar
  23. 23.
    Y. Gnanou, P. Lutz, P. Rempp, Macromol. Chem. Phys. 189, 2885 (1988)CrossRefGoogle Scholar
  24. 24.
    K. Shimada, R. Nagahata, S.-I. Kawabata, S. Matsuyama, T. Saito, S. Kinugasa, J. Mass Spectrom. 38, 948 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A. Balijepalli, J. Ettedgui, A.T. Cornio, J.W.F. Robertson, K.P. Cheung, J.J. Kasianowicz, C. Vaz, ACS Nano 8, 1547 (2014)CrossRefGoogle Scholar
  26. 26.
    F. Oesterhelt, M. Rief, H.E. Gaub, New J. Phys. 1, 6 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    M.L. Alessi, A.I. Norman, S.E. Knowlton, D.L. Ho, S.C. Greer, Macromolecules 38, 9333 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    A.I. Norman, Y. Fei, D.L. Ho, S.C. Greer, Macromolecules 40, 2559 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    I. Cozmuta, J.T. O’Keeffe, D. Bose, V. Stolc, Mol. Simul. 31, 79 (2005)CrossRefGoogle Scholar
  30. 30.
    A. Aksimentiev, K. Schulten, Biophys. J. 88, 3745 (2005)CrossRefGoogle Scholar
  31. 31.
    J. Wong-ekkabut, M. Karttunen, J. Chem. Theory Comput. 8, 2905 (2012)CrossRefGoogle Scholar
  32. 32.
    A. Johner, J.F. Joanny, J. Phys. II 1, 181 (1991)ADSGoogle Scholar
  33. 33.
    M. Möddel, M. Bachmann, W. Janke, J. Phys. Chem. B 113, 3314 (2009)CrossRefGoogle Scholar
  34. 34.
    A.N. Rissanou, S.H. Anastasiadis, I.A. Bitsanis, J. Polym. Sci. B: Polym. Phys. 47, 2462 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    H.-H. Wei, Y.-C. Li, Phys. Rev. E 94, 603 (2016)Google Scholar
  36. 36.
    J.A. Plascak, P.H.L. Martins, M. Bachmann, Phys. Rev. E 95, 050501 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    P. Aryal, M.S.P. Sansom, S.J. Tucker, J. Mol. Biol. 427, 121 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Monasadat Talarimoghari
    • 1
  • Gerhard Baaken
    • 2
  • Ralf Hanselmann
    • 3
    • 4
  • Jan C. Behrends
    • 1
    • 4
    • 5
  1. 1.Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  2. 2.Ionera Technologies GmbHFreiburgGermany
  3. 3.Institute for Macromolecular ChemistryFreiburgGermany
  4. 4.Freiburg Materials Research CentreUniversity of FreiburgFreiburgGermany
  5. 5.Freiburg Centre for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgFreiburgGermany

Personalised recommendations