Advertisement

Translocation of polyampholytes and intrinsically disordered proteins

  • A. Johner
  • J. F. Joanny
Regular Article
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)

Abstract.

Polyampholytes are polymers carrying electrical charges of both signs along their backbone. We consider synthetic polyampholytes with a quenched random charge sequence and intrinsically disordered proteins, which have a well-defined charge sequence and behave like polyampholytes in the denaturated state. We study their translocation driven by an electric field through a pore. The role of disorder along the charge sequence of synthetic polyampholytes is analyzed. We show how disorder slows down the translocation dynamics. For intrinsically disordered proteins, the translocation vs. rejection rates by the pore depends on which end is engaged in the translocation channel. We discuss the rejection time, the blockade time distributions and the translocation speed for the charge sequence of two specific intrinsically disordered proteins differing in length and structure.

Graphical abstract

Keywords

Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 

References

  1. 1.
    V.N. Uversky, Int. J. Biochem. Cell Biol. 43, 1090 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Müller-Spät, A. Soranno, V. Hirschfeld, H. Hofmann, S. Rüegger, Proc. Natl. Acad. Sci. U.S.A. 107, 14609 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    P.G. Higgs, J.-F. Joanny, J. Chem. Phys. 94, 1543 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    M. Brucale, B. Schuler, B. Samori, Chem. Rev. 114, 3281 (2014)CrossRefGoogle Scholar
  5. 5.
    C. Baran, G.S.T. Smith, V.V. Bamm, G. Harauz, J.S. Lee, Biochem. Biophys. Res. Commun. 391, 224 (2010)CrossRefGoogle Scholar
  6. 6.
    D. Japrung, J. Dogan, K.J. Freedman, A. Nadzeyka, S. Bauerdick, T. Albrecht, M.J. Kim, P. Jemth, J.B. Edel, Anal. Chem. 85, 2449 (2013)CrossRefGoogle Scholar
  7. 7.
    J.-F. Lutz, M. Ouchi, D.R. Liu, M. Sawamoto, Science 341, 628 (2013)CrossRefGoogle Scholar
  8. 8.
    J.-F. Lutz, Macromol. Rapid Commun. 38, 1700582 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Moldakarimov, A. Johner, J.-F. Joanny, Eur. Phys. J. E 10, 303 (2003)CrossRefGoogle Scholar
  10. 10.
    J. Baschnagel, H. Meyer, J. Wittmer, I. Kulić, H. Mohrbach, F. Ziebert, G.-M. Nam, N.-K. Lee, A. Johner, Polymers 8, 286 (2016)CrossRefGoogle Scholar
  11. 11.
    A.V. Dobrynin, M. Rubinstein, S. Obukhov, Macromolecules 29, 398 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Kantor, M. Kardar, D. Ertas, Physica A 249, 301 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    V. Yamakov, A. Milchev, H.J. Limbach, B. Dünweg, R. Everaers, Phys. Rev. Lett. 85, 4305 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Dobrynin, R.H. Colby, M. Rubinstein, J. Polym. Sci. Polym. Phys. 42, 3513 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    G. Oukhaled, J. Mathé, A.-L. Biance, L. Bacri, J.-M. Betton, D. Lairez, J. Pelta, L. Auvray, Phys. Rev. Lett. 98, 158101 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    D. Lairez, M.-C. Clochard, J.-E. Wegrowe, Sci. Rep. 6, 38966 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    L. Payet, M. Martinho, C. Merstorf, M. Pastoriza-Gallego, J. Pelta, V. Viasnoff, L. Auvray, M. Muthukumar, J. Mathé, Biophys. J. 109, 1600 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M. Muthukumar, Polymer Translocation (CRC Press 2011) ISBN 9781420075168Google Scholar
  19. 19.
    D. Lubensky, D. Nelson, Biophys. J. 77, 1824 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    P. Rawghanian, A.Yu. Grosberg, Phys. Rev. E 87, 042722 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Ya.G. Sinai, Theory Probab. Appl. 27, 256 (1982)CrossRefGoogle Scholar
  22. 22.
    A. Comtet, D.S. Dean, J. Phys. A: Math. Gen. 31, 8595 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    H. Kesten, Physica A 138, 299 (1986)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    F. Delyon, J.-F. Luciani, J. Stat. Phys. 54, 1065 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    J.-P. Bouchaud, A. Comtet, A. Georges, P. Le Dousal, Ann. Phys. 201, 285 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    C. Aslangul, N. Pottier, D. Saint-James, J. Phys. (Paris) 50, 899 (1989)CrossRefGoogle Scholar
  27. 27.
    C. Aslangul, P. Chvosta, N. Pottier, D. Saint-James, Europhys. Lett. 19, 347 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    B. Derrida, J. Stat. Phys. 31, 433 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    S. Mirigan, Y. Wang, M. Muthukumar, J. Chem. Phys. 137, 064904 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    J.L. Barrat, J.F. Joanny, Advances in Chemical Physics, Vol. 94, (John Wiley and Sons, 1996) pp. 1--66Google Scholar
  31. 31.
    D. Long, A.V. Dobrynin, M. Rubinstein, A. Ajdari, J. Chem. Phys. 108, 1234 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Kafri, D.K. Lubensky, D.R. Nelson, Biophys. J. 86, 3373 (2004)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Charles Sadron CNRS-UnistraStrasbourg CedexFrance
  2. 2.ESPCI ParisPSL UniversityParisFrance

Personalised recommendations