On the contribution of the chain ends to the surface tension of a polymer melt

  • Dominique Ausserré
Regular Article
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)


We propose a physical picture describing the mechanisms by which chain ends affect the surface tension of a mono-dispersed polymer melt with chain length N. The driving effect is the adsorption equilibrium of chain ends within a bulk slice adjoining the surface and acting as a confined end reservoir. The thickness of that limited space is a characteristic length of the melt. This picture conforms to a previous approach proposed years ago by de Gennes. However, the characteristic length \(aN^{1/3}\) that we consider is different from the one \(aN^{1/2}\) that he considered. Our choice is carefully argued. The resulting model correctly reflects the transition between the two N regimes reported in experimental studies, with the correct exponents. Stretching contributions are also considered, and appear small compared to the above-mentioned adsorption equilibrium effects. We think that the usefulness of the newly introduced characteristic length might exceed the specific problem addressed in the present paper. The equilibrium state of a lamellar diblock copolymer is briefly discussed for illustration.

Graphical abstract


Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 


  1. 1.
    S. Joly, A. Raquois, F. Paris, B. Hamdoun, L. Auvray, D. Ausserre, Y. Gallot, Phys. Rev. Lett. 77, 4394 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    S. Wu, Polymer Interface and Adhesion (Dekker, New York, 1982)Google Scholar
  3. 3.
    G.T. Dee, B. Sauer, Adv. Phys. 47, 161 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    P. Mahmoudi, M.W. Matsen, Eur. Phys. J. E 40, 85 (2017)CrossRefGoogle Scholar
  5. 5.
    P.G. de Gennes, C. R. Acad. Sci. Paris, Série II 307, 1841 (1988)Google Scholar
  6. 6.
    Miguel Aubouy, Manuel Manghi, Elie Raphaël, Phys. Rev. Lett. 84, 4858 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    D. Ausserré, J. Phys. (Paris) 50, 3021 (1989)CrossRefGoogle Scholar
  8. 8.
    A. Silberberg, J. Colloid Interface Sci. 90, 86 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    Jian-Sheng Wang, Kurt Binder, J. Phys. I 1, 1583 (1991)Google Scholar
  10. 10.
    M.W. Matsen, P. Mahmoudi, Eur. Phys. J. E 29, 107 (2009)CrossRefGoogle Scholar
  11. 11.
    David T. Wu, Glenn H. Fredrickson, Jean-Pierre Carton, Armand Ajdari, Ludwik Leibler, J. Polym. Sci. Part B: Polym. Phys. 33, 2373 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    Matthew S. Turner, Phys. Rev. Lett. 69, 1788 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    Bart Vorselaars, Pawel Stasiak, Mark W. Matsen, Macromolecules 48, 9071 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    S.P. Obukhov, Phys. Rev. Lett. 95, 038305 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    D. Ausserré, V.A. Raghunathan, M. Maaloum, J. Phys. II 3, 1485 (1993)Google Scholar
  16. 16.
    A. Semenov, J. Phys. II 6, 1759 (1996)Google Scholar
  17. 17.
    J.P. Wittmer, A. Cavallo, H. Xu, J.E. Zabel, P. Polinska, N. Schulmann, H. Meyer, J. Farago, A. Johner, S.P. Obukhov, J. Baschnagel, Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers, arXiv:1107.4454v1 [cond.mat.soft] (2011)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.“Molecular Landscapes, Biophotonic Horizons” Group IMMMCNRS, UMR 6283, Université du MansLe MansFrance

Personalised recommendations