Advertisement

From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers

  • Natsuhiko Yoshinaga
  • Tanniemola B. Liverpool
Regular Article
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems

Abstract.

We study how hydrodynamic interactions affect the collective behaviour of active particles suspended in a fluid at high concentrations, with particular attention to lubrication forces which appear when the particles are very close to one another. We compute exactly the limiting behaviour of the hydrodynamic interactions between two spherical (circular) active swimmers in very close proximity to one another in the general setting in both three and (two) dimensions. Combining this with far-field interactions, we develop a novel numerical scheme which allows us to study the collective behaviour of large numbers of active particles with accurate hydrodynamic interactions when close to one another. We study active swimmers whose intrinsic flow fields are characterised by force dipoles and quadrupoles. Using this scheme, we are able to show that lubrication forces when the particles are very close to each other can play as important a role as long-range hydrodynamic interactions in determining their many-body behaviour. We find that when the swimmer force dipole is large, finite clusters and open gel-like clusters appear rather than complete phase separation. This suppression is due to near-field lubrication interactions. For swimmers with small force dipoles, we find surprisingly that a globally polar-ordered phase appears because near-field lubrication rather than long-range hydrodynamics dominates the alignment mechanism. Polar order is present for very large system sizes and is stable to fluctuations with a finite noise amplitude. We explain the emergence of polar order using a minimal model in which only the leading rotational effect of the near-field interaction is included. These phenomena are also reproduced in two dimensions.

Graphical abstract

Keywords

Topical issue: Advances in Computational Methods for Soft Matter Systems 

References

  1. 1.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, Madan Rao, R. Aditi Simha, Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. 318, 170 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Sriram Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)CrossRefGoogle Scholar
  4. 4.
    Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, Ofer Shochet, Phys. Rev. Lett. 75, 1226 (1995)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Henricus H. Wensink, Jörn Dunkel, Sebastian Heidenreich, Knut Drescher, Raymond E. Goldstein, Hartmut Löwen, Julia M. Yeomans, Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M.E. Cates, Rep. Prog. Phys. 75, 042601 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Jeremie Palacci, Stefano Sacanna, Asher Preska Steinberg, David J. Pine, Paul M. Chaikin, Science 339, 936 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Antoine Bricard, Jean-Baptiste Caussin, Nicolas Desreumaux, Olivier Dauchot, Denis Bartolo, Nature 503, 95 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Eric Bertin, Hugues Chaté, Francesco Ginelli, Shradha Mishra, Anton Peshkov, Sriram Ramaswamy, New J. Phys. 15, 085032 (2013)CrossRefGoogle Scholar
  10. 10.
    Yaouen Fily, M. Cristina Marchetti, Phys. Rev. Lett. 108, 235702 (2012)CrossRefGoogle Scholar
  11. 11.
    Ivo Buttinoni, Julian Bialké, Felix Kümmel, Hartmut Löwen, Clemens Bechinger, Thomas Speck, Phys. Rev. Lett. 110, 238301 (2013)CrossRefGoogle Scholar
  12. 12.
    Gabriel S. Redner, Michael F. Hagan, Aparna Baskaran, Phys. Rev. Lett. 110, 055701 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Thomas Speck, Eur. Phys. J. ST 225, 2287 (2016)CrossRefGoogle Scholar
  14. 14.
    M.J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952)CrossRefGoogle Scholar
  15. 15.
    J.R. Blake, Bull. Aust. Math. Soc. 5, 255 (1971)CrossRefGoogle Scholar
  16. 16.
    Ramin Golestanian, Tanniemola B. Liverpool, Armand Ajdari, Phys. Rev. Lett. 94, 220801 (2005)CrossRefGoogle Scholar
  17. 17.
    Y. Ibrahim, T.B. Liverpool, Eur. Phys. J. ST 225, 1843 (2016)CrossRefGoogle Scholar
  18. 18.
    T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    I. Llopis, I. Pagonabarraga, Eur. Phys. Lett. 75, 999 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Takuji Ishikawa, J.T. Locsei, T.J. Pedley, J. Fluid Mech. 615, 401 (2008)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kenta Ishimoto, Eamonn A. Gaffney, Phys. Rev. E 88, 062702 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Gao-Jin Li, Arezoo M. Ardekani, Phys. Rev. E 90, 013010 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Nima Sharifi-Mood, Ali Mozaffari, Ubaldo M. Córdova-Figueroa, J. Fluid Mech. 798, 910 (2016)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Dario Papavassiliou, Gareth P. Alexander, J. Fluid Mech. 813, 618 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Peter J. Mucha, Shang-You Tee, David A. Weitz, Boris I. Shraiman, Michael P. Brenner, J. Fluid Mech. 501, 71 (2004)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    John J. Molina, Yasuya Nakayama, Ryoichi Yamamoto, Soft Matter 9, 4923 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Andreas Zöttl, Holger Stark, Phys. Rev. Lett. 112, 118101 (2014)CrossRefGoogle Scholar
  28. 28.
    Ricard Matas-Navarro, Ramin Golestanian, Tanniemola B. Liverpool, Suzanne M. Fielding, Phys. Rev. E 90, 032304 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    J.-B. Delfau, J. Molina, M. Sano, EPL 114, 24001 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Saverio E. Spagnolie, Eric Lauga, J. Fluid Mech. 700, 105 (2012)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    D. Saintillan, M.J. Shelley, Complex Fluids in Biological Systems (Springer, 2015) Chapt. “Theory of active suspensions”, pp. 319--355Google Scholar
  32. 32.
    Joakim Stenhammar, Cesare Nardini, Rupert W. Nash, Davide Marenduzzo, Alexander Morozov, Phys. Rev. Lett. 119, 028005 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Natsuhiko Yoshinaga, Tanniemola B. Liverpool, Phys. Rev. E 96, 020603(R) (2017)CrossRefGoogle Scholar
  34. 34.
    Francisco Alarcon, Chantal Valeriani, Ignacio Pagonabarraga, Soft Matter 13, 814 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    E.L. Hill, Am. J. Phys. 22, 211 (1954)ADSCrossRefGoogle Scholar
  36. 36.
    A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1957)Google Scholar
  37. 37.
    J.R. Blake, A.T. Chwang, J. Eng. Math. 8, 23 (1974)CrossRefGoogle Scholar
  38. 38.
    D.J. Jeffrey, Y. Onishi, J. Fluid Mech. 139, 261 (1984)ADSCrossRefGoogle Scholar
  39. 39.
    S. Kim, S.J. Karrila, Microhydrodynamics (Butterworth-Heinemann, New York, 1991)Google Scholar
  40. 40.
    OnShun Pak, Eric Lauga, J. Eng. Math. 88, 1 (2014)CrossRefGoogle Scholar
  41. 41.
    S.R. Majumdar, Mathematika 14, 43 (1967)CrossRefGoogle Scholar
  42. 42.
    M.E. O”Neill, Math. Proc. Cambridge Philos. Soc. 65, 543 (1969)ADSCrossRefGoogle Scholar
  43. 43.
    Michael E. O”Neill, Samir R. Majumdar, Z. Angew. Math. Phys. 21, 180 (1970)CrossRefGoogle Scholar
  44. 44.
    M.D.A. Cooley, Q. J. Mech. Appl. Math. 24, 237 (1971)CrossRefGoogle Scholar
  45. 45.
    M.B.A. Cooley, M.E. O”Neill, Math. Proc. Cambridge Philos. Soc. 66, 407 (1969)ADSCrossRefGoogle Scholar
  46. 46.
    D.J. Jeffrey, Mathematika 29, 58 (1982)MathSciNetCrossRefGoogle Scholar
  47. 47.
    D.J. Jeffrey, Y. Onishi, Z. Angew. Math. Phys. 35, 634 (1984)CrossRefGoogle Scholar
  48. 48.
    James W. Swan, John F. Brady, Rachel S. Moore, et al., Phys. Fluids 23, 071901 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    M.E. O”Neill, K. Stewartson, J. Fluid Mech. 27, 705 (1967)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    M.D.A. Cooley, M.E. O”Neill, IMA J. Appl. Math. 4, 163 (1968)ADSCrossRefGoogle Scholar
  51. 51.
    Alois Würger, Phys. Rev. Lett. 116, 138302 (2016)CrossRefGoogle Scholar
  52. 52.
    J.F. Brady, G. Bossis, Annu. Rev. Fluid Mech. 20, 111 (1988)ADSCrossRefGoogle Scholar
  53. 53.
    J.R. Melrose, R.C. Ball, Europhys. Lett. 32, 535 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    E. Yariv, H. Brenner, J. Fluid Mech. 484, 85 (2003)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Raymond G. Cox, Howard Brenner, Chem. Eng. Sci. 22, 1753 (1967)CrossRefGoogle Scholar
  56. 56.
    M.D.A. Cooley, M.E. O”Neill, Mathematika 16, 37 (1969)CrossRefGoogle Scholar
  57. 57.
    Rajesh Singh, R. Adhikari, Generalized stokes laws for active colloids and their applications, arXiv:1603.05735 (2016)Google Scholar
  58. 58.
    Kengo Ichiki, J. Fluid Mech. 452, 231 (2002)ADSMathSciNetGoogle Scholar
  59. 59.
    P. Mazur, W. van Saarloos, Physica A 115, 21 (1982)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Anthony J.C. Ladd, J. Chem. Phys. 93, 3484 (1990)ADSCrossRefGoogle Scholar
  61. 61.
    F. Alarcón, I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013)CrossRefGoogle Scholar
  62. 62.
    Fernando Peruani, Andreas Deutsch, Markus Bär, Phys. Rev. E 74, 030904 (2006)CrossRefGoogle Scholar
  63. 63.
    Johannes Blaschke, Maurice Maurer, Karthik Menon, Andreas Zöttl, Holger Stark, Soft Matter 12, 9821 (2016)ADSCrossRefGoogle Scholar
  64. 64.
    P.G. Saffman, M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)ADSCrossRefGoogle Scholar
  65. 65.
    G.W. Gardiner, Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences (Springer, New York, 1985)Google Scholar
  66. 66.
    Arthur A. Evans, Takuji Ishikawa, Takami Yamaguchi, Eric Lauga, Phys. Fluids 23, 111702 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    Norihiro Oyama, John Jairo Molina, Ryoichi Yamamoto, A binary collision route for purely hydrodynamic orientational ordering of microswimmers, arXiv:1606.03839 (2016)Google Scholar
  68. 68.
    R.C. Ball, J.R. Melrose, Physica A 247, 444 (1997)ADSCrossRefGoogle Scholar
  69. 69.
    H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Eur. Phys. J. B 64, 451 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    Joakim Stenhammar, Davide Marenduzzo, Rosalind J. Allen, Michael E. Cates, Soft Matter 10, 1489 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    Marco Leoni, Tanniemola B. Liverpool, Phys. Rev. Lett. 105, 238102 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    R. Aditi Simha, Sriram Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)ADSCrossRefGoogle Scholar
  73. 73.
    Broto Tjipto-Margo, Glenn T. Evans, Michael P. Allen, Daan Frenkel, J. Phys. Chem. 96, 3942 (1992)CrossRefGoogle Scholar
  74. 74.
    R. Voituriez, J.F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    A.C. Maggs, V. Rossetto, Phys. Rev. Lett. 88, 196402 (2002)ADSCrossRefGoogle Scholar
  76. 76.
    Natsuhiko Yoshinaga, Phys. Rev. E 89, 012913 (2014)CrossRefGoogle Scholar
  77. 77.
    Margaret Stimson, G.B. Jeffery, Proc. R. Soc. London, Ser. A 111, 110 (1926)ADSCrossRefGoogle Scholar
  78. 78.
    A.J. Goldman, R.G. Cox, H. Brenner, Chem. Eng. Sci. 22, 637 (1967)CrossRefGoogle Scholar
  79. 79.
    G.B. Jeffery, Proc. R. Soc. London, A 101, 169 (1922)ADSCrossRefGoogle Scholar
  80. 80.
    D.J. Jeffrey, Y. Onishi, Q. J. Mech. Appl. Math. 34, 129 (1981)CrossRefGoogle Scholar
  81. 81.
    J. Yang, C.W. Wolgemuth, G. Huber, Phys. Fluids 25, 051901 (2013)ADSCrossRefGoogle Scholar
  82. 82.
    R. Cardinaels, H.A. Stone, Phys. Fluids 27, 072001 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Natsuhiko Yoshinaga
    • 1
    • 2
    • 3
  • Tanniemola B. Liverpool
    • 3
    • 4
    • 5
  1. 1.WPI - Advanced Institute for Materials ResearchTohoku UniversitySendaiJapan
  2. 2.MathAM-OIL, AISTSendaiJapan
  3. 3.The Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA
  4. 4.School of MathematicsUniversity of BristolBristolUK
  5. 5.BrisSynBio, Life Sciences BuildingBristolUK

Personalised recommendations