Advertisement

Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects

  • Tanzila Hayat
  • S. Nadeem
  • A. U. Khan
Regular Article
  • 43 Downloads

Abstract.

The main object of the present paper is to examine and compare the improvement of flow and heat transfer characteristics between a rotating nanofluid and a newly discovered hybrid nanofluid in the presence of velocity slip and thermal slip. The influence of thermal radiation is also included in the present study. The system after applying the similarity transformations is solved numerically by using the bvp-4c scheme. Additionally, numerical calculations for the coefficient of skin friction and local Nusselt number are introduced and perused for germane parameters. The comparison between water, nanofluid and hybrid nanofluid on velocity and temperature is also visualized. It is observed that the velocity and temperature distributions are decreasing functions of the slip parameter. Temperature is boosted by thermal radiation and rotation. It is found that the heat transfer rate of the hybrid nanofluid is higher as compared to the traditional nanofluid.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    J.A. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, third edition (Dover, New York, 1954) pp. 440,441Google Scholar
  2. 2.
    J. Happel, AIChE J. 4, 197 (1958)CrossRefGoogle Scholar
  3. 3.
    R.L. Hamilton, O.K. Crosser, Ind. Eng. Chem. Fundam. 1, 187 (1962)CrossRefGoogle Scholar
  4. 4.
    A.S. Ahuja, Appl. Phys. 46, 3408 (1975)CrossRefGoogle Scholar
  5. 5.
    S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology (Wiley, NJ, 2007)Google Scholar
  6. 6.
    S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, paper No. ANL/MSD/CP--84938Google Scholar
  7. 7.
    S. Rashidi, S. Akar, M. Bovand, R. Ellahi, J. Renew. Energy 115, 400 (2018)CrossRefGoogle Scholar
  8. 8.
    K.M. Shirvan, R. Ellahi, M. Mamourian, M. Moghiman, Int. J. Heat Mass Transfer 107, 1110 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Ellahi, M.H. Tariq, M. Hassan, K. Vafai, J. Mol. Liq. 229, 339 (2017)CrossRefGoogle Scholar
  10. 10.
    K.M. Shirvan, M. Mamourian, S. Mirzakhanlari, R. Ellahi, Powder Technol. 313, 99 (2017)CrossRefGoogle Scholar
  11. 11.
    J.A. Esfahani, M. Akbarzadeh, S. Rashidi, M.A. Rosenb, R. Ellahi, Int. J. Heat Mass Transfer 109, 1162 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Rashidi, J.A. Esfahani, R. Ellahi, Appl. Sci. 7, 431 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Hassan, A. Zeeshan, A. Majeed, R. Ellahi, J. Magn. & Magn. Mater. 443, 36 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    T. Hayat, S. Nadeem, Chin. Phys. B 25, 114701 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    S.U. Rahman, R. Ellahi, S. Nadeem, Q.M.Z. Zia, J. Mol. Liq. 218, 484 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi, J. Mol. Liq. 220, 1 (2016)CrossRefGoogle Scholar
  17. 17.
    K.M. Shirvan, M. Mamourian, S. Mirzakhanlari, R. Ellahi, J. Mol. Liq. 220, 888 (2016)CrossRefGoogle Scholar
  18. 18.
    N. Shehzad, A. Zeeshan, R. Ellahi, K. Vafai, J. Mol. Liq. 222, 446 (2016)CrossRefGoogle Scholar
  19. 19.
    R. Ellahi, A. Zeeshan, M. Hassan, Int. J. Numer. Methods Heat Fluid Flow 26, 2160 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Sheikholeslami, Q.M. Zia, R. Ellahi, Appl. Sci. 6, 324 (2016)CrossRefGoogle Scholar
  21. 21.
    T. Hayat, S. Nadeem, The effects of MHD and buoyancy on Hematite water-based fluid past a convectively heated stretching sheet, Neural Comput. Appl. (2017)  https://doi.org/10.1007/s00521-017-3139-9
  22. 22.
    T. Hayat, S. Nadeem, Results Phys. 8, 397 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    T. Hayat, S. Nadeem, Results Phys. 7, 3910 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, J. Heat Transfer 121, 280 (1999)CrossRefGoogle Scholar
  25. 25.
    W. Evans, J. Fish, P. Keblinski, Appl. Phys. Lett. 88, 093116 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, Powder Technol. 196, 89 (2009)CrossRefGoogle Scholar
  27. 27.
    T. Takabi, S. Salehi, Adv. Mech. Eng. 6, 147059 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Nasrin, M. Alim, J. Appl. Fluid Mech. 7, 543 (2014)Google Scholar
  29. 29.
    R. Nimmagadda, K. Venkatasubbaiah, Eur. J. Mech. B/Fluids 52, 19 (2015)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    T. Hayat, S. Nadeem, Results Phys. 7, 2317 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    S. Suresh, K. Venkitaraj, P. Selvakumar, M. Chandrasekar, Colloids Surf. A 388, 41 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Moghadassi, E. Ghomi, F. Parvizian, Int. J. Therm. Sci. 92, 50 (2015)CrossRefGoogle Scholar
  33. 33.
    M.H. Esfe, S.H. Rostamian, A. Alirezaie, Appl. Therm. Eng. 111, 1202 (2017)CrossRefGoogle Scholar
  34. 34.
    J. Sarkar, P. Ghosh, A. Adil, Renew. Sustain. Energy Rev. 43, 164 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Tayebi, A.J. Chamkha, Numer. Heat Transfer, Part A: Appl. 70, 1141 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    S. Suriya Uma Devi, S.P. Anjali Devi, Can. J. Phys. 94, 490 (2016)CrossRefGoogle Scholar
  37. 37.
    B. Takabi, A.M. Gheitaghy, P. Tazraei, J. Thermophys. Heat Transfer 30, 523 (2016)CrossRefGoogle Scholar
  38. 38.
    A. Yoshimura, R.K. Prudhomme, J. Rheol. 32, 53 (1998)CrossRefGoogle Scholar
  39. 39.
    M. Turkyilmazoglu, J. Heat Transfer 133, 122602 (2011)CrossRefGoogle Scholar
  40. 40.
    M. Turkyilmazoglu, Int. J. Therm. Sci. 50, 2264 (2011)CrossRefGoogle Scholar
  41. 41.
    M.M. Rashidi, N. Vishnu Ganesh, A.K. Abdul Hakeem, B. Ganga, J. Mol. Liq. 198, 234 (2014)CrossRefGoogle Scholar
  42. 42.
    T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, AIP Adv. 6, 025012 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    L.F. Shampine, I. Gladwell, S. Thompson, Solving ODEs with MATLAB (Cambridge University Press, Cambridge, UK, 2003) ISBN 0-521-53094-6Google Scholar
  44. 44.
    L.F. Shampine, M.W. Reichelt, J. Kierzenka, Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c, http://www.mathworks.com/bvptutorial

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations