Advertisement

Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities

  • J. Helfferich
  • J. Brisch
  • H. Meyer
  • O. Benzerara
  • F. Ziebert
  • J. Farago
  • J. Baschnagel
Regular Article

Abstract.

From equilibrium molecular dynamics (MD) simulations of a bead-spring model for short-chain glass-forming polymer melts we calculate several quantities characterizing the single-monomer dynamics near the (extrapolated) critical temperature \(T_{\rm c}\) of mode-coupling theory: the mean-square displacement g0(t), the non-Gaussian parameter \( \alpha_{2}(t)\) and the self-part of the van Hove function \( G_{\rm s}(r,t)\) which measures the distribution of monomer displacements r in time t. We also determine these quantities from a continuous-time random walk (CTRW) approach. The CTRW is defined in terms of various probability distributions which we know from previous analysis. Utilizing these distributions the CTRW can be solved numerically and compared to the MD data with no adjustable parameter. The MD results reveal the heterogeneous and non-Gaussian single-particle dynamics of the supercooled melt near \( T_{\rm c}\). In the time window of the early \(\alpha\) relaxation \( \alpha_{2}(t)\) is large and \( G_{\rm s}(r,t)\) is broad, reflecting the coexistence of monomer displacements that are much smaller (“slow particles”) and much larger (“fast particles”) than the average at time t, i.e. than \( r = g_{0}(t)^{1/2}\). For large r the tail of \( G_{\rm s}(r,t)\) is compatible with an exponential decay, as found for many glassy systems. The CTRW can reproduce the spatiotemporal dependence of \( G_{\rm s}(r,t)\) at a qualitative to semiquantitative level. However, it is not quantitatively accurate in the studied temperature regime, although the agreement with the MD data improves upon cooling. In the early \(\alpha\) regime we also analyze the MD results for \( G_{\rm s}(r,t)\) via the space-time factorization theorem predicted by ideal mode-coupling theory. While we find the factorization to be well satisfied for small r, both above and below \( T_{\rm c}\) , deviations occur for larger r comprising the tail of \( G_{\rm s}(r,t)\). The CTRW analysis suggests that single-particle “hops” are a contributing factor for these deviations.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986)Google Scholar
  2. 2.
    K.S. Schweizer, Curr. Opin. Colloid Interface Sci. 12, 297 (2007)CrossRefGoogle Scholar
  3. 3.
    C. Donati, S.C. Glotzer, P.H. Poole, W. Kob, S.J. Plimpton, Phys. Rev. E 60, 3107 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    M. Fuchs, W. Götze, M.R. Mayr, Phys. Rev. E 58, 3384 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    E. Flenner, G. Szamel, Phys. Rev. E 72, 011205 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    E. Flenner, G. Szamel, Phys. Rev. E 72, 031508 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    P. Chaudhuri, L. Berthier, W. Kob, Phys. Rev. Lett. 99, 060604 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    P. Chaudhuri, Y. Gao, L. Berthier, M. Kilfoil, W. Kob, J. Phys.: Condens. Matter 20, 244126 (2008)ADSGoogle Scholar
  9. 9.
    E.J. Saltzman, K.S. Schweizer, Phys. Rev. E 77, 051504 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S.H. Chong, Phys. Rev. E 78, 041501 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S.H. Chong, S.H. Chen, F. Mallamace, J. Phys.: Condens. Matter 21, 504101 (2009)Google Scholar
  12. 12.
    D. Coslovich, A. Ikeda, K. Miyazaki, Phys. Rev. E 93, 042602 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2009)Google Scholar
  14. 14.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    S.C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    L. Berthier, G. Biroli, J.P. Bouchaud, R.L. Jack, in Dynamical Heterogeneities in Glasses, Colloids and Granular Media, edited by L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, W. van Saarloos (Oxford University Press, Oxford, 2011) pp. 69--109Google Scholar
  18. 18.
    R. Chandelier, A. Widmer-Cooper, J.K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell, D.R. Reichman, Phys. Rev. Lett. 105, 135702 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Keys, L.O. Hedges, J.P. Garrahan, S.C. Glotzer, D. Chandler, Phys. Rev. X 1, 021013 (2011)Google Scholar
  20. 20.
    J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen, J. Baschnagel, Phys. Rev. E 89, 042603 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    R. Pastore, A. Coniglio, M.P. Ciamarra, Soft Matter 10, 5724 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    M.P. Ciamarra, R. Pastore, A. Coniglio, Soft Matter 12, 358 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    M. Warren, J. Rottler, EPL 88, 58005 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    A. Smessaert, J. Rottler, Phys. Rev. E 88, 022314 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    K. Vollmayr-Lee, J. Chem. Phys. 121, 4781 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    K. Vollmayr-Lee, R. Bjorkquist, L.M. Chambers, Phys. Rev. Lett. 110, 017801 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    N.H. Siboni, D. Raabe, F. Varnik, EPL 111, 48004 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)ADSCrossRefGoogle Scholar
  29. 29.
    J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    R.A. Denny, D.R. Reichman, J.P. Bouchaud, Phys. Rev. Lett. 90, 025503 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    S. Mirigian, K.S. Schweizer, J. Chem. Phys. 140, 194506 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    S. Mirigian, K.S. Schweizer, J. Chem. Phys. 140, 194507 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    S.M. Bhattacharyya, B. Bagchi, P.G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 105, 16077 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    P. Charbonneau, Y. Jin, G. Parisi, F. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 111, 15025 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    R. Pastore, A. Coniglio, A. de Candia, A. Fierro, M.P. Ciamarra, J. Stat. Mech. Theory Exp. 2016, 054050 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008)Google Scholar
  38. 38.
    O. Rubner, A. Heuer, Phys. Rev. E 78, 011504 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    C.F.E. Schroer, A. Heuer, Phys. Rev. Lett. 110, 067801 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    L.O. Hedges, L. Maibaum, D. Chandler, J.P. Garrahan, J. Chem. Phys. 127, 211101 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen, J. Baschnagel, Phys. Rev. E 89, 042604 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    M. Warren, J. Rottler, Phys. Rev. Lett. 110, 025501 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    J. Woh Ahn, B. Falahee, C. Del Picolo, M. Vogel, D. Bingemann, J. Chem. Phys. 138, 12A527 (2013)CrossRefGoogle Scholar
  44. 44.
    J. Helfferich, K. Vollmayr-Lee, F. Ziebert, H. Meyer, J. Baschnagel, EPL 109, 36004 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    S. Frey, F. Weyßer, H. Meyer, J. Farago, M. Fuchs, J. Baschnagel, Eur. Phys. J. E 38, 11 (2015)CrossRefGoogle Scholar
  46. 46.
    S.C. Plimpton, Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edition (Academic Press, London, 2002)Google Scholar
  48. 48.
    S. Melchionna, G. Ciccotti, B. Holian, Mol. Phys. 78, 533 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    S. Frey, PhD Thesis, Université de Strasbourg, Strasbourg (2012) available from http://www.sudoc.fr/165862653
  50. 50.
    J. Helfferich, PhD Thesis, University of Freiburg (2015) available from http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-99854
  51. 51.
    N. Lačević, F.W. Starr, T.B. Schrøder, S.C. Glotzer, J. Chem. Phys. 119, 7372 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    F.W. Starr, J.F. Douglas, S. Sastry, J. Chem. Phys. 138, 12A541 (2013)CrossRefGoogle Scholar
  53. 53.
    M. Warren, J. Rottler, Phys. Rev. Lett. 104, 205501 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    H. Miyagawa, Y. Hiwatari, B. Bernu, J.P. Hansen, J. Chem. Phys. 88, 3879 (1988)ADSCrossRefGoogle Scholar
  55. 55.
    K. Vollmayr-Lee, A. Zippelius, Phys. Rev. E 72, 041507 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    V.K. Souza, D.J. Wales, J. Chem. Phys. 129, 164507 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    M. Vogel, Macromolecules 41, 2949 (2008)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    S. Ashtekar, D. Nguyen, K. Zhao, J. Lyding, W.H. Wang, M. Gruebele, J. Chem. Phys. 137, 141102 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    S. Ashtekar, J. Lyding, M. Gruebele, Phys. Rev. Lett. 109, 166103 (2012) see also supplementary materialADSCrossRefGoogle Scholar
  60. 60.
    J.W. Haus, K.W. Kehr, Phys. Rep. 150, 263 (1987)ADSCrossRefGoogle Scholar
  61. 61.
    J. Klafter, I.M. Sokolov, First Steps in Random Walks -- From Tools to Applications (Oxford University Press, Oxford, 2011)Google Scholar
  62. 62.
    C. Godrèche, J.M. Luck, J. Stat. Phys. 104, 489 (2001)CrossRefGoogle Scholar
  63. 63.
    J. Helfferich, Eur. Phys. J. E 37, 73 (2014)CrossRefGoogle Scholar
  64. 64.
    J.H.P. Schulz, E. Barkai, R. Metzler, Phys. Rev. X 4, 011028 (2014)Google Scholar
  65. 65.
    J. Baschnagel, I. Kriuchevskyi, J. Helfferich, C. Ruscher, H. Meyer, O. Benzerara, J. Farago, J. Wittmer, in Polymer Glasses, edited by C.B. Roth (CRC Press, Taylor & Francis Group, 2016) pp. 55--106. Google Scholar
  66. 66.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003)Google Scholar
  67. 67.
    G. Zumofen, J. Klafter, A. Blumen, Models for Anomalous Diffusion, in Disorder Effects on Relaxation Processes: Glasses, Polymers, Proteins, edited by R. Richert, A. Blumen (Springer, Berlin, 1994) p. 251Google Scholar
  68. 68.
    W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997)ADSCrossRefGoogle Scholar
  69. 69.
    E. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Science 287, 627 (2000)ADSCrossRefGoogle Scholar
  70. 70.
    W.K. Kegel, A. van Blaaderen, Science 287, 290 (2000)ADSCrossRefGoogle Scholar
  71. 71.
    J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005)ADSGoogle Scholar
  72. 72.
    G.F. Signorini, J.L. Barrat, M.L. Klein, J. Chem. Phys. 92, 1294 (1990)ADSCrossRefGoogle Scholar
  73. 73.
    W. Kob, J. Horbach, K. Binder, The Dynamics of Non-Crystalline Silica: Insight from Molecular Dynamics Computer Simulations, in Slow Dynamics in Complex Systems, Vol. 469 (AIP, Woodbury, 1999) pp. 441--451Google Scholar
  74. 74.
    T. Gleim, W. Kob, Eur. Phys. J. B 13, 83 (2000)ADSCrossRefGoogle Scholar
  75. 75.
    F. Weysser, A.M. Puertas, M. Fuchs, T. Voigtmann, Phys. Rev. E 82, 011504 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    Y. Khairy, F. Alvarez, A. Arbe, J. Colmenero, Phys. Rev. E 88, 042302 (2013)ADSCrossRefGoogle Scholar
  77. 77.
    M. Aichele, J. Baschnagel, Eur. Phys. J. E 5, 229 (2001)CrossRefGoogle Scholar
  78. 78.
    T. Rizzo, T. Voigtmann, EPL 111, 56008 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    A. Cavagna, Phys. Rep. 476, 51 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992)CrossRefGoogle Scholar
  81. 81.
    S.M. Bhattacharyya, B. Bagchi, P.G. Wolynes, Phys. Rev. E 72, 031509 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    L.M.C. Janssen, D. Reichman, Phys. Rev. Lett. 115, 205701 (2015)ADSCrossRefGoogle Scholar
  83. 83.
    L.M.C. Janssen, P. Mayer, D. Reichman, J. Stat. Mech. 2016, 054049 (2016)CrossRefGoogle Scholar
  84. 84.
    L. Berthier, D. Chandler, J.P. Garrahan, Europhys. Lett. 69, 320 (2005)ADSCrossRefGoogle Scholar
  85. 85.
    W. Götze, L. Sjögren, Transp. Theory Stat. Phys. 24, 801 (1995)CrossRefGoogle Scholar
  86. 86.
    J. Colmenero, A. Narros, F. Alvarez, A. Arbe, A.J. Moreno, J. Phys.: Condens. Matter 19, 205127 (2007)ADSGoogle Scholar
  87. 87.
    R. Pastore, A. Coniglio, M.P. Ciamarra, Soft Matter 11, 7214 (2015)ADSCrossRefGoogle Scholar
  88. 88.
    G. Biroli, J.P. Garrahan, J. Chem. Phys. 138, 12A301 (2013)CrossRefGoogle Scholar
  89. 89.
    B.A. Pazmiño Betancourt, J.F. Douglas, F.W. Starr, J. Chem. Phys. 140, 204509 (2014)ADSCrossRefGoogle Scholar
  90. 90.
    Y. Gebremichael, M. Vogel, S.C. Glotzer, J. Chem. Phys. 120, 4415 (2004)ADSCrossRefGoogle Scholar
  91. 91.
    J. Colmenero, J. Phys.: Condens. Matter 27, 103101 (2015)ADSGoogle Scholar
  92. 92.
    E.W. Montroll, M.F. Shlesinger, On the Wonderful World of Random Walks, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, edited by J.L. Lebowitz, E.W. Montroll (Elsevier Science Publishers BV, 1984) pp. 1--121Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. Helfferich
    • 1
  • J. Brisch
    • 2
  • H. Meyer
    • 2
  • O. Benzerara
    • 2
  • F. Ziebert
    • 3
  • J. Farago
    • 2
  • J. Baschnagel
    • 2
  1. 1.Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Université de Strasbourg, CNRS, ICS UPR22StrasbourgFrance
  3. 3.Institute for Theoretical PhysicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations