Shear strength of wet granular materials: Macroscopic cohesion and effective stress

Discrete numerical simulations, confronted to experimental measurements
  • Michel Badetti
  • Abdoulaye Fall
  • François Chevoir
  • Jean-Noël Roux
Regular Article
  • 20 Downloads

Abstract.

Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value \(\mu\simeq 0.09\), identified from the behaviour of the dry material. Shear resistance and solid fraction \(\Phi_{S}\) are recorded as functions of the reduced pressure \(P^{\ast}\), which, defined as \(P^{\ast}=a^{2}\sigma_{22}/F_{0}\), compares stress \(\sigma_{22}\), applied in the velocity gradient direction, to the tensile strength \(F_{0}\) of the capillary bridges between grains of diameter a, and characterizes cohesion effects. The simplest Mohr-Coulomb relation with \(P^{\ast}\)-independent cohesion c applies as a good approximation for large enough \(P^{\ast}\) (typically \(P^{\ast}\ge 2\). Numerical simulations extend to different values of μ and, compared to experiments, to a wider range of \(P^{\ast}\). The assumption that capillary stresses act similarly to externally applied ones onto the dry granular contact network (effective stresses) leads to very good (although not exact) predictions of the shear strength, throughout the numerically investigated range \(P^{\ast}\ge 0.5\) and \(0.05\le\mu\le 0.25\). Thus, the internal friction coefficient \(\mu^{\ast}_{0}\) of the dry material still relates the contact force contribution to stresses, \(\sigma^{{\rm cont}}_{12}=\mu^{\ast}_{0} \sigma^{{\rm cont}}_{22}\), while the capillary force contribution to stresses, \( \underline{\underline{{\sigma}}}^{{\rm cap}}\), defines a generalized Mohr-Coulomb cohesion c, depending on \(P^{\ast}\) in general. c relates to \(\mu^{\ast}_0\) , coordination numbers and capillary force network anisotropy. c increases with liquid content through the pendular regime interval, to a larger extent, the smaller the friction coefficient. The simple approximation ignoring capillary shear stress \(\sigma^{{\rm cap}}_{12}\) (referred to as the Rumpf formula) leads to correct approximations for the larger saturation range within the pendular regime, but fails to capture the decrease of cohesion for smaller liquid contents.

Graphical abstract

Keywords

Flowing Matter: Granular Matter 

References

  1. 1.
    N. Mitarai, F. Nori, Adv. Phys. 55, 1 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    P. Pierrat, H.S. Caram, Powder Technol. 91, 83 (1997)CrossRefGoogle Scholar
  3. 3.
    T. Gröger, U. Tüzün, D. Heyes, Powder Technol. 133, 203 (2003)CrossRefGoogle Scholar
  4. 4.
    P. Pierrat, D.K. Agrawal, H.S. Caram, Powder Technol. 99, 220 (1998)CrossRefGoogle Scholar
  5. 5.
    V. Richefeu, M.S. El Youssoufi, F. Radjai, Phys. Rev. E 73, 051304 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    F. Soulié, M.S. El Youssoufi, F. Cherblanc, C. Saix, Eur. Phys. J. E 21, 349 (2006)CrossRefGoogle Scholar
  7. 7.
    L. Scholtès, B. Chareyre, F. Nicot, F. Darve, Int. J. Eng. Sci. 47, 64 (2009)CrossRefGoogle Scholar
  8. 8.
    L. Scholtès, P.-Y. Hicher, F. Nicot, B. Chareyre, F. Darve, Int. J. Numer. Anal. Methods Geomech. 33, 1289 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Khamseh, J.-N. Roux, F. Chevoir, Phys. Rev. E 92, 022201 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Shen, M. Jiang, C. Thornton, Granular Matter 18, 37 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Roy, S. Luding, T. Weinhart, New J. Phys. 19, 043014 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    M.M. Kohonen, D. Geromichalos, M. Scheel, C. Schier, S. Herminghaus, Physica A 339, 7 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    S. Herminghaus, Adv. Phys. 54, 221 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    M. Scheel, R. Seeman, M. Brinkmann, M. Di Michiel, A. Scheppard, B. Breidenbach, S. Herminghaus, Nat. Mater. 7, 189 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    F. Radjai, F. Dubois (Editors), Discrete-Element Modeling of Granular Materials (Wiley, 2011)Google Scholar
  16. 16.
    G. Lian, C. Thornton, M.J. Adams, J. Colloid Interface Sci. 161, 138 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    C.D. Willett, M.J. Adams, S.A. Johnson, J.P.K. Seville, Langmuir 16, 9396 (2000)CrossRefGoogle Scholar
  18. 18.
    O. Pitois, P. Moucheront, X. Chateau, J. Colloid Interface Sci. 231, 26 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    H. Rumpf, Chem.-Ing.-Tech. 42, 538 (1970)CrossRefGoogle Scholar
  20. 20.
    F. Radjai, V. Richefeu, Philos. Trans. R. Soc. A 367, 5123 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    B. Chareyre, Phys. Rev. E 96, 016901 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    A. Fall, G. Ovarlez, D. Hautemayou, C. Mézière, J.-N. Roux, F. Chevoir, J. Rheol. 59, 1065 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    D.M. Wood, Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press, 1990)Google Scholar
  24. 24.
    B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media: Between Fluid and Solid (Cambridge University Press, Cambridge, UK, 2013)Google Scholar
  25. 25.
    V.-D. Than, S. Khamseh, A.-M. Tang, J.-M. Pereira, F. Chevoir, J.-N. Roux, ASCE J. Eng. Mech. 143, C4016001 (2017)CrossRefGoogle Scholar
  26. 26.
    I. Agnolin, J.-N Roux, Phys. Rev. E 76, 061302 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J.-N. Roux, F. Chevoir, Dimensional Analysis and Control Parameters, in Discrete-Element Modeling of Granular Materials (Wiley, 2011) Chapt. 8, pp. 199--232Google Scholar
  28. 28.
    D. Maugis, J. Adhes. Sci. Technol. 1, 105 (1987)CrossRefGoogle Scholar
  29. 29.
    P.-E. Peyneau, J.-N. Roux, Phys. Rev. E 78, 011307 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    J. Christoffersen, M.M. Mehrabadi, S. Nemat-Nasser, J. Appl. Mech. 48, 339 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    P. Rognon, J.-N. Roux, D. Wolf, M. Naaim, F. Chevoir, Europhys. Lett. 74, 644 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    T. Hatano, Phys. Rev. E 75, 060301(R) (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Forterre, O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    F. Chevoir, J.-N. Roux, F. da Cruz, P.G. Rognon, G. Koval, Powder Technol. 190, 264 (2009)CrossRefGoogle Scholar
  35. 35.
    E. Azéma, F. Radjai, Phys. Rev. Lett. 112, 078001 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    N. Berger, É. Azéma, J.-F. Douce, F. Radjaï, EPL 112, 64004 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    F. Boyer, É. Guazzelli, O. Pouliquen, Phys. Rev. Lett. 107, 188301 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    D. Kadau, G. Bartels, L. Brendel, D.E. Wolf, Phase Trans. 76, 315 (2003)CrossRefGoogle Scholar
  39. 39.
    F.A. Gilabert, J.-N. Roux, A. Castellanos, Phys. Rev. E 78, 031305 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    D. Kadau, G. Bartels, L. Brendel, D.E. Wolf, Comput. Phys. Commun. 147, 190 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    A. Lemaitre, J.-N. Roux, F. Chevoir, Rheol. Acta 48, 925 (2009)CrossRefGoogle Scholar
  42. 42.
    M. Badetti, J.-N. Roux, P. Aimedieu, S. Rodts, F. Chevoir, A. Fall, Rheology and microstructure of unsaturated granular materials: Experiments and simulations, to be published in J. Rheol. (2018)Google Scholar
  43. 43.
    F. Soulié, M.S. El Youssoufi, F. Cherblanc, C. Saix, Eur. Phys. J. E 21, 349 (2006)CrossRefGoogle Scholar
  44. 44.
    S. Khamseh, J.-N. Roux, F. Chevoir, Phys. Rev. E 96, 016902 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    T. Aste, M. Saadatfar, T.J. Senden, Phys. Rev. E 71, 061302 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    I. Agnolin, J.-N. Roux, Phys. Rev. E 76, 061304 (2007)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    L. La Ragione, V. Magnanimo, Phys. Rev. E 85, 031304 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    M.H. Khalili, J.-N. Roux, J.-M. Pereira, S. Brisard, M. Bornert, Phys. Rev. E 95, 032908 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    L. Rothenburg, R.J. Bathurst, Géotechnique 39, 601 (1989)CrossRefGoogle Scholar
  50. 50.
    P.-E. Peyneau, J.-N. Roux, Phys. Rev. E 78, 041307 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    F. Radjaï, J.-Y. Delenne, E. Azéma, S. Roux, Granular Matter 14, 259 (2012)CrossRefGoogle Scholar
  52. 52.
    O.I. Imole, M. Wojtkowski, V. Magnanimo, S. Luding, Phys. Rev. E 89, 042210 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    M.H. Khalili, J.-N. Roux, J.-M. Pereira, S. Brisard, M. Bornert, Phys. Rev. E 95, 032907 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    J.-Y. Delenne, V. Richefeu, F. Radjaï, J. Fluid Mech. 762, R5 (2015)CrossRefGoogle Scholar
  55. 55.
    V. Richefeu, F. Radjai, J.-Y. Delenne, Comput. Geotech. 80, 353 (2016)CrossRefGoogle Scholar
  56. 56.
    R. Mani, D. Kadau, D. Or, H.J. Herrmann, Phys. Rev. Lett. 109, 248001 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    J.-F. Bruchon, J.-M. Pereira, M. Vandamme, N. Lenoir, P. Delage, M. Bornert, Granular Matter 15, 783 (2013)CrossRefGoogle Scholar
  58. 58.
    T. Aste, M. Saadatfar, A. Sakellariou, T.J. Senden, Physica A 339, 16 (2004)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    T. Aste, M. Saadatfar, T.J. Senden, Phys. Rev. E 71, 061302 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Michel Badetti
    • 1
  • Abdoulaye Fall
    • 1
  • François Chevoir
    • 1
  • Jean-Noël Roux
    • 1
  1. 1.Université Paris-Est, Laboratoire Navier, IFSTTAR, ENPC, CNRS (UMR8205)Champs-sur-MarneFrance

Personalised recommendations