Advertisement

Surface and extrapolated point charge renormalizations for charge-stabilized colloidal spheres

  • Yannick Hallez
  • Martine Meireles
Tips and Tricks

Abstract.

The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is widely used to model interactions between weakly charged spheres in dilute suspensions. For particles bearing a higher charge, the linearized electrostatics underlying the DLVO theory is no longer valid but it is possible to map the real colloidal system to an auxiliary one that still obeys linear electrostatics but which involves a different, effective pair potential. This procedure, termed renormalization, can be performed in various ways, the most widely used being surface charge renormalization (SCR) based on the cell model. SCR is still limited to dilute suspensions since the auxiliary system is made of spheres interacting through a DLVO-like pair potential. The recent extrapolated point charge (EPC) renormalization overcomes this limitation by using point charges in the auxiliary system and has indeed been shown to produce better results than the SCR in dense suspensions. Here, we recall that the DLVO-like potential used in the SCR can be modified to account for many-body ion-colloid core exclusion effects (a model termed SCRX here); we show that the accuracy of the EPC and SCRX renormalizations is virtually identical, and conclude by explaining why the EPC method is still the most attractive option of the two in many cases.

Graphical abstract

Keywords

Tips and Tricks 

References

  1. 1.
    B. Derjaguin, L. Landau et al., Acta Physicochim. URSS 14, 633 (1941)Google Scholar
  2. 2.
    E. Verwey, J. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, Netherlands, 1948)Google Scholar
  3. 3.
    L. Belloni, Colloids Surf. A 140, 227 (1998)CrossRefGoogle Scholar
  4. 4.
    S. Alexander, P.M. Chaikin, P. Grant, G.J. Morales, P. Pincus, D. Hone, J. Chem. Phys. 80, 5776 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    E. Trizac, L. Bocquet, M. Aubouy, H.H. von Grünberg, Langmuir 19, 4027 (2003)CrossRefGoogle Scholar
  6. 6.
    N. Boon, G.I. Guerrero-García, R. van Roij, M.O. de la Cruz, Proc. Natl. Acad. Sci. U.S.A. 112, 9242 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    S. Khan, T.L. Morton, D. Ronis, Phys. Rev. A 35, 4295 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    L. Belloni, J. Phys.: Condens. Matter 12, R549 (2000)ADSGoogle Scholar
  9. 9.
    J. Dobnikar, R. Castaneda-Priego, H. von Grünberg, E. Trizac, New J. Phys. 8, 277 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    H.H. von Grünberg, L. Belloni, Phys. Rev. E 62, 2493 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    M. Deserno, H.-H. von Grünberg, Phys. Rev. E 66, 011401 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Hallez, M. Meireles, Langmuir 33, 10051 (2017)CrossRefGoogle Scholar
  13. 13.
    F.J. Rogers, D.A. Young, Phys. Rev. A 30, 999 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    M. Heinen, P. Holmqvist, A.J. Banchio, G. Nägele, J. Chem. Phys. 134, 044532 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J. Gapinski, G. Nägele, A. Patkowski, J. Chem. Phys. 136, 024507 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    F.H. Stillinger, H. Sakai, S. Torquato, J. Chem. Phys. 117, 288 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    C. Tejero, M. Baus, J. Chem. Phys. 118, 892 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002)ADSGoogle Scholar
  19. 19.
    R. van Roij, M. Dijkstra, J.-P. Hansen, Phys. Rev. E 59, 2010 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    R. van Roij, J.-P. Hansen, Phys. Rev. Lett. 79, 3082 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    B. Zoetekouw, R. van Roij, Phys. Rev. E 73, 021403 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    P. Linse, J. Chem. Phys. 113, 4359 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRSToulouseFrance

Personalised recommendations