Advertisement

Simulation of the mechanical behavior of random fiber networks with different microstructure

  • H. Hatami-Marbini
Regular Article
  • 53 Downloads

Abstract.

Filamentous protein networks are broadly encountered in biological systems such as cytoskeleton and extracellular matrix. Many numerical studies have been conducted to better understand the fundamental mechanisms behind the striking mechanical properties of these networks. In most of these previous numerical models, the Mikado algorithm has been used to represent the network microstructure. Here, a different algorithm is used to create random fiber networks in order to investigate possible roles of architecture on the elastic behavior of filamentous networks. In particular, random fibrous structures are generated from the growth of individual fibers from random nucleation points. We use computer simulations to determine the mechanical behavior of these networks in terms of their model parameters. The findings are presented and discussed along with the response of Mikado fiber networks. We demonstrate that these alternative networks and Mikado networks show a qualitatively similar response. Nevertheless, the overall elasticity of Mikado networks is stiffer compared to that of the networks created using the alternative algorithm. We describe the effective elasticity of both network types as a function of their line density and of the material properties of the filaments. We also characterize the ratio of bending and axial energy and discuss the behavior of these networks in terms of their fiber density distribution and coordination number.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    C.P. Broedersz, F.C. MacKintosh, Rev. Mod. Phys. 86, 995 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    H. Hatami-Marbini, C. Picu, Modeling the Mechanics of Semiflexible Biopolymer Networks: Non-affine Deformation and Presence of Long-range Correlations, in Advances in Soft Matter Mechanics, edited by S. Li, B. Sun (Springer, Heidelberg, 2012) p. 119Google Scholar
  3. 3.
    R. Picu, Soft Matter 7, 6768 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    H. Hatami-Marbini, M.R. Mofrad, Rheology and Mechanics of the Cytoskeleton, in Complex Fluids in Biological Systems, edited by S. Spagnolie (Springer, New York, 2015) p. 187Google Scholar
  5. 5.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science, New York, 1994)Google Scholar
  6. 6.
    Y.-C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer Science & Business Media, New York, 2013)Google Scholar
  7. 7.
    M. Gardel, J. Shin, F. MacKintosh, L. Mahadevan, P. Matsudaira, D. Weitz, Science 304, 1301 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    P.A. Janmey, M.E. McCormick, S. Rammensee, J.L. Leight, P.C. Georges, F.C. MacKintosh, Nat. Mater. 6, 48 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    C. Storm, J.J. Pastore, F.C. MacKintosh, T.C. Lubensky, P.A. Janmey, Nature 435, 191 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    O. Chaudhuri, S.H. Parekh, D.A. Fletcher, Nature 445, 295 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    M. Rubinstein, R.H. Colby, Polymer Physics, Vol. 23 (Oxford University Press, New York, 2003)Google Scholar
  12. 12.
    H. Hatami-Marbini, Phys. Rev. E 93, 042503 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    D.A. Head, A.J. Levine, F.C. MacKintosh, Phys. Rev. E 68, 061907 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    H. Hatami-Marbini, R. Picu, Phys. Rev. E 77, 062103 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J. Wilhelm, E. Frey, Phys. Rev. Lett. 91, 108103 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    H. Hatami-Marbini, R.C. Picu, Phys. Rev. E 80, 046703 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    H. Hatami-Marbini, R. Picu, Acta Mech. 205, 77 (2009)CrossRefGoogle Scholar
  18. 18.
    D. Rodney, M. Fivel, R. Dendievel, Phys. Rev. Lett. 95, 108004 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    E. Huisman, T.C. Lubensky, Phys. Rev. Lett. 106, 088301 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    C. Heussinger, E. Frey, Phys. Rev. E 75, 011917 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    H. Cox, British J. Appl. Phys. 3, 72 (1952)ADSCrossRefGoogle Scholar
  22. 22.
    A. Shahsavari, R. Picu, Philos. Mag. Lett. 93, 356 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    H. Hatami-Marbini, A. Shahsavari, R. Picu, Comput.-Aided Des. 45, 77 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Onck, T. Koeman, T. Van Dillen, E. Van der Giessen, Phys. Rev. Lett. 95, 178102 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    C. Heussinger, E. Frey, Eur. Phys. J. E 24, 47 (2007)CrossRefGoogle Scholar
  26. 26.
    P.L. Chandran, V.H. Barocas, J. Biomech. Eng. 128, 259 (2006)CrossRefGoogle Scholar
  27. 27.
    A. Brightman, B. Rajwa, J. Sturgis, M. McCallister, J. Robinson, S. Voytik-Harbin, Biopolymers 54, 222 (2000)CrossRefGoogle Scholar
  28. 28.
    K.E. Kadler, D.F. Holmes, J.A. Trotter, J.A. Chapman, Biochem. J. 316, 1 (1996)CrossRefGoogle Scholar
  29. 29.
    A. Sharma, A.J. Licup, K.A. Jansen, R. Rens, M. Sheinman, G.H. Koenderink, F.C. MacKintosh, Nat. Phys. 12, 584 (2016)CrossRefGoogle Scholar
  30. 30.
    S.B. Lindström, D.A. Vader, A. Kulachenko, D.A. Weitz, Phys. Rev. E 82, 051905 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    A.J. Licup, S. Münster, A. Sharma, M. Sheinman, L.M. Jawerth, B. Fabry, D.A. Weitz, F.C. MacKintosh, Proc. Natl. Acad. Sci. U.S.A. 112, 9573 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    H.N. Higgs, T.D. Pollard, Annu. Rev. Biochem. 70, 649 (2001)CrossRefGoogle Scholar
  33. 33.
    J.B. Alberts, G.M. Odell, PLOS Biol. 2, e412 (2004)CrossRefGoogle Scholar
  34. 34.
    H. Hatami-Marbini, Phys. Rev. E 97, 022504 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    C. Broedersz, M. Sheinman, F. MacKintosh, Phys. Rev. Lett. 108, 078102 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    C.P. Broedersz, X. Mao, T.C. Lubensky, F.C. MacKintosh, arXiv preprint, arXiv:1011.6535 (2010)Google Scholar
  37. 37.
    H. Hatami-Marbini, Philos. Mag. Lett. 96, 165 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    M. Latva-Kokko, J. Timonen, Phys. Rev. E 64, 066117 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical & Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations