Advertisement

Time-delay-induced dynamical behaviors for an ecological vegetation growth system driven by cross-correlated multiplicative and additive noises

  • Kang-Kang Wang
  • Hui Ye
  • Ya-Jun Wang
  • Sheng-Hong Li
Regular Article
  • 46 Downloads

Abstract.

In this paper, the modified potential function, the stationary probability distribution function (SPDF), the mean growth time and the mean degeneration time for a vegetation growth system with time delay are investigated, where the vegetation system is assumed to be disturbed by cross-correlated multiplicative and additive noises. The results reveal some fact that the multiplicative and additive noises can both reduce the stability and speed up the decline of the vegetation system, while the strength of the noise correlation and time delay can both enhance the stability of the vegetation and slow down the depression process of the ecological system. On the other hand, with regard to the impacts of noises and time delay on the mean development and degeneration processes of the ecological system, it is discovered that 1) in the development process of the vegetation population, the increase of the noise correlation strength and time delay will restrain the regime shift from the barren state to the boom one, while the increase of the additive noise can lead to the fast regime shift from the barren state to the boom one. 2) Conversely, in the depression process of the ecological system, the increase of the strength of the correlation noise and time delay will prevent the regime shift from the boom state to the barren one. Comparatively, the increase of the additive and multiplicative noises can accelerate the regime shift from the boom state to the barren state.

Graphical abstract

Keywords

Living systems, biological networks 

References

  1. 1.
    C.S. Holling, Annu. Rev. Ecol. Syst. 4, 1 (1973)CrossRefGoogle Scholar
  2. 2.
    M. Scheffer, S.R. Carpenter, J.A. Foley, C. Folke, B. Walker, Nature 413, 591 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    M. Scheffer et al., Nature 461, 53 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    S.R. Carpenter et al., Science 332, 1079 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    R. Roy, A.W. Yu, S. Zhu, Phys. Rev. Lett. 55, 2794 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    J. Hasty, J. Pradines, M. Dolink, J.J. Collins, Proc. Natl. Acad. Sci. U.S.A. 97, 2075 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    S.R. Carpenter, W.A. Brock, Ecol. Lett. 9, 318 (2006)Google Scholar
  8. 8.
    J.H. Yang, A.F. Sanjuán Miguel, H.G. Liu, H. Zhu, Nonlinear Dyn. 87, 1721 (2017)CrossRefGoogle Scholar
  9. 9.
    J.H. Yang, A.F. Sanjuán Miguel, H.G. Liu, G. Litak, X. Li, Commun. Nonlinear Sci. Numer. Simul. 41, 104 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    J.H. Yang, H. Zhu, Commun. Nonlinear Sci. Numer. Simul. 18, 1316 (2013)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    D.J. Wu, L. Cao, S.Z. Ke, Phys. Rev. E 50, 2496 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Q. Liu, Y. Jia, Phys. Rev. E 70, 041907 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    A. Dari, B. Kia, A.R. Bulsara, W.L. Ditto, Chaos 21, 047521 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Ghosh, S. Banerjee, I. Bose, Eur. Phys. J. E 35, 11 (2012)CrossRefGoogle Scholar
  15. 15.
    C.H. Zeng, H. Wang, A.L. Gong, J. Stat. Mech. 2012, P07012 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Jia, J.R. Li, Phys. Rev. Lett. 78, 994 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    C.J. Tessone, S.H. Wio, P. Haggi, Phys. Rev. E 62, 4623 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    X.D. Zhang, X.Q. Yang, Y. Tao, PLOS One 6, 17104 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    C.H. Zeng, H. Wang, L.R. Nie, Chaos 22, 03312 (2012)Google Scholar
  20. 20.
    C.H. Zeng, H. Wang, L.R. Nie, Chaos 22, 039901 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    C.S. Holling, Annu. Rev. Ecol. Syst. 4, 1 (1973)CrossRefGoogle Scholar
  22. 22.
    A.C. Klausmeier, Science 284, 1826 (1999)CrossRefGoogle Scholar
  23. 23.
    N.M. Shnerb, P. Sarah, H. Lavee, S. Solomon, Phys. Rev. Lett. 90, 038101 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    P. D’dorico, F. Laio, L. Ridolfi, Proc. Natl. Acad. Sci. U.S.A. 102, 10819 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    B. Spagnolo, A.A. Dubkov, N.V. Agudov, Acta Phys. Pol. B 35, 1419 (2004)ADSGoogle Scholar
  26. 26.
    V. Guttal, C. Jayaprakash, Ecol. Model. 201, 420 (2007)CrossRefGoogle Scholar
  27. 27.
    V. Guttal, C. Jayaprakash, Ecol. Lett. 11, 450 (2008)CrossRefGoogle Scholar
  28. 28.
    L.S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    C. Masoller, Phys. Rev. Lett. 90, 020601 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    T. Ohira, T. Yamane, Phys. Rev. E 61, 1247 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    P.C. Bressloff, S. Coombes, Phys. Rev. Lett. 80, 4815 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    M.Y. Choi, B.A. Huberman, Phys. Rev. B 31, 2862 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    C. Masoller, Phys. Rev. Lett. 86, 2782 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    J. Tang, X. Yang, J. Ma, Y. Jia, Phys. Rev. E 80, 011907 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    C.H. Zeng, H. Wang, Ecol. Model. 233, 52 (2012)CrossRefGoogle Scholar
  36. 36.
    Z.L. Jia, D.C. Mei, Chin. J. Phys. 49, 6 (2011)Google Scholar
  37. 37.
    C.H. Zeng, H. Wang, Chem. Phys. 402, 1 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    C.H. Zeng, Q.L. Han, T. Yang, H. Wang, Z.L. Jia, J. Stat. Mech. 2013, P10017 (2013)CrossRefGoogle Scholar
  39. 39.
    Q.L. Han, T. Yang, C.H. Zeng, H. Wang, Z.Q. Liu, Y.C. Fu, C. Zhang, D. Tian, Physica A 408, 96 (2014)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Schenzle, H. Brand, Phys. Rev. A 20, 1628 (1979)ADSCrossRefGoogle Scholar
  41. 41.
    R. Graham, A. Schenzle, Phys. Rev. A 25, 1731 (1982)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    A.S. Mikhailov, A.Y. Loskutov, Foundations of Synergetics II: Chaos and Noise, Springer Series in Synergetics (Springer, Berlin, 1996)Google Scholar
  43. 43.
    J. García-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999). Google Scholar
  44. 44.
    D. Sornette, Critical Phenomena in Natural Sciences, Springer Series in Synergetics (Springer, Heidelberg, 2000)Google Scholar
  45. 45.
    B. Spagnolo, D. Valenti, A. Fiasconaro, Math. Biosci. Eng. 1, 185 (2004)MathSciNetCrossRefGoogle Scholar
  46. 46.
    G. Denaro, D. Valentia, A. La Cognata, B. Spagnolo et al., Ecol. Complex. 13, 21 (2013)CrossRefGoogle Scholar
  47. 47.
    G. Denaro, D. Valenti, B. Spagnolo et al., PLOS One 8, e66765 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Q.X. Liu, Z. Jin, B.L. Li, J. Stat. Mech. Theory E. 5, P05011 (2008)Google Scholar
  49. 49.
    D. Valenti, A. Fiasconaro, B. Spagnolo, Physica A 331, 477 (2004)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    H.A. Kramers, Physica (Amsterdam) 7, 284 (1940)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    D. Valenti, L. Magazzù, P. Caldara, B. Spagnolo, Phys. Rev. B 91, 235412 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    B. Spagnolo, A.A. Dubkov, N.V. Agudov, Eur. Phys. J. B 40, 273 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    K.K. Wang, D.C. Zong, Y. Zhou, J.C. Wu, Chaos Solitons Fractals 91, 490 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kang-Kang Wang
    • 1
  • Hui Ye
    • 1
    • 2
  • Ya-Jun Wang
    • 1
  • Sheng-Hong Li
    • 3
  1. 1.School of ScienceJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.School of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  3. 3.School of Mathematical ScienceNanjing Normal UniversityNanjingChina

Personalised recommendations