Advertisement

How to simulate patchy particles

  • Lorenzo Rovigatti
  • John Russo
  • Flavio Romano
Colloquium
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems

Abstract.

Patchy particles is the name given to a large class of systems of mesoscopic particles characterized by a repulsive core and a discrete number of short-range and highly directional interaction sites. Numerical simulations have contributed significantly to our understanding of the behaviour of patchy particles, but, although simple in principle, advanced simulation techniques are often required to sample the low temperatures and long time-scales associated with their self-assembly behaviour. In this work we review the most popular simulation techniques that have been used to study patchy particles, with a special focus on Monte Carlo methods. We cover many of the tools required to simulate patchy systems, from interaction potentials to biased moves, cluster moves, and free-energy methods. The review is complemented by an educationally oriented Monte Carlo computer code that implements all the techniques described in the text to simulate a well-known tetrahedral patchy particle model.

Graphical abstract

Keywords

Topical issue: Advances in Computational Methods for Soft Matter Systems 

References

  1. 1.
    E. Bianchi, B. Capone, I. Coluzza, L. Rovigatti, P.D.J. van Oostrum, Phys. Chem. Chem. Phys. 19, 19847 (2017)Google Scholar
  2. 2.
    I. Coluzza, PLoS ONE 9, e112852 (2014) arXiv:1406.4373v1ADSGoogle Scholar
  3. 3.
    J.J. McManus, P. Charbonneau, E. Zaccarelli, N. Asherie, Curr. Opin. Colloid Interface Sci. 22, 73 (2016)Google Scholar
  4. 4.
    J. Cai, J.P. Townsend, T.C. Dodson, P.A. Heiney, A.M. Sweeney, Science 357, 564 (2017)ADSGoogle Scholar
  5. 5.
    D.C. Rapaport, Phys. Rev. Lett. 101, 186101 (2008)ADSGoogle Scholar
  6. 6.
    J.A. Millan, D. Ortiz, S.C. Glotzer, Soft Matter 11, 1386 (2015)ADSGoogle Scholar
  7. 7.
    C. De Michele, T. Bellini, F. Sciortino, Macromolecules 45, 1090 (2012)ADSGoogle Scholar
  8. 8.
    S. Whitelam, I. Tamblyn, J.P. Garrahan, P.H. Beton, Phys. Rev. Lett. 114, 1 (2015)Google Scholar
  9. 9.
    F. Sciortino, Eur. Phys. J. B 64, 505 (2008)ADSGoogle Scholar
  10. 10.
    Y. Wang, Y. Wang, D.R. Breed, V.N. Manoharan, L. Feng, A.D. Hollingsworth, M. Weck, D.J. Pine, Nature 491, 51 (2012)ADSGoogle Scholar
  11. 11.
    G.-R. Yi, D.J. Pine, S. Sacanna, J. Phys.: Condens. Matter 25, 193101 (2013)ADSGoogle Scholar
  12. 12.
    W. Liu, M. Tagawa, H.L. Xin, T. Wang, H. Emamy, H. Li, K.G. Yager, F.W. Starr, A.V. Tkachenko, O. Gang, Science 351, 582 (2016)ADSGoogle Scholar
  13. 13.
    A. Striolo, J. Kim, L. Liz-Marzán, L. Tadiello, M. Pauly, C. Murphy, A. Roig, D. Gracias, Y. Xia, J. Reguera et al., Faraday Discuss. 191, 117 (2016)ADSGoogle Scholar
  14. 14.
    J. Zhang, B.A. Grzybowski, S. Granick, Langmuir 33, 6964 (2017)Google Scholar
  15. 15.
    J. Diaz, D. Pine, Bull. Am. Phys. Soc. (2018) http://meetings.aps.org/Meeting/MAR18/Session/K54.6
  16. 16.
    E. Bianchi, R. Blaak, C.N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011)Google Scholar
  17. 17.
    J. Tavares, N. Almarza, M.T. da Gama, Soft Matter 11, 5828 (2015)ADSGoogle Scholar
  18. 18.
    J.M. Tavares, C.S. Dias, N.A.M. Arajo, M.M. Telo da Gama, J. Phys. Chem. B 122, 3514 (2018)Google Scholar
  19. 19.
    P.I.C. Teixeira, J. Tavares, Curr. Opin. Colloid Interface Sci. 30, 16 (2017)Google Scholar
  20. 20.
    Q. Chen, S.C. Bae, S. Granick, Nature 469, 381 (2011)ADSGoogle Scholar
  21. 21.
    Y. Iwashita, Y. Kimura, Soft Matter 9, 10694 (2013)ADSGoogle Scholar
  22. 22.
    S. Biffi, R. Cerbino, F. Bomboi, E.M. Paraboschi, R. Asselta, F. Sciortino, T. Bellini, Proc. Natl. Acad. Sci. U.S.A. 110, 15633 (2013)ADSGoogle Scholar
  23. 23.
    F. Bomboi, F. Romano, M. Leo, J. Fernandez-Castanon, R. Cerbino, T. Bellini, F. Bordi, P. Filetici, F. Sciortino, Nat. Commun. 7, 13191 (2016)ADSGoogle Scholar
  24. 24.
    W. Liu, N.A. Mahynski, O. Gang, A.Z. Panagiotopoulos, S.K. Kumar, ACS Nano 11, 4950 (2017)Google Scholar
  25. 25.
    N. Kern, D. Frenkel, J. Chem. Phys. 118, 9882 (2003)ADSGoogle Scholar
  26. 26.
    Zhang, A.S. Keys, T. Chen, S.C. Glotzer, Langmuir 21, 11547 (2005)Google Scholar
  27. 27.
    E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006)ADSGoogle Scholar
  28. 28.
    J.P.K. Doye, A.A. Louis, I.-C. Lin, L.R. Allen, E.G. Noya, A.W. Wilber, H.C. Kok, R. Lyus, Phys. Chem. Chem. Phys. 9, 2197 (2007)Google Scholar
  29. 29.
    E.G. Noya, C. Vega, J.P.K. Doye, A.A. Louis, J. Chem. Phys. 132, 234511 (2010)ADSGoogle Scholar
  30. 30.
    E. Bianchi, G. Kahl, C.N. Likos, Soft Matter 7, 8313 (2011)ADSGoogle Scholar
  31. 31.
    A.B. Pawar, I. Kretzschmar, Langmuir 25, 9057 (2009)Google Scholar
  32. 32.
    D.J. Kraft, J. Hilhorst, M.A.P. Heinen, M.J. Hoogenraad, B. Luigjes, W.K. Kegel, J. Phys. Chem. B 115, 7175 (2011)Google Scholar
  33. 33.
    P.D.J. van Oostrum, M. Hejazifar, C. Niedermayer, E. Reimhult, J. Phys.: Condens. Matter 27, 234105 (2015)ADSGoogle Scholar
  34. 34.
    T. Tigges, D. Hoenders, A. Walther, Small 11, 4540 (2015)ADSGoogle Scholar
  35. 35.
    S. Roldán-Vargas, F. Smallenburg, W. Kob, F. Sciortino, Sci. Rep. 3, 2451 (2013)ADSGoogle Scholar
  36. 36.
    L. Rovigatti, V. Bianco, J.M. Tavares, F. Sciortino, J. Chem. Phys. 146, 041103 (2017)ADSGoogle Scholar
  37. 37.
    F. Smallenburg, F. Sciortino, Nat. Phys. 9, 554 (2013)Google Scholar
  38. 38.
    L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ACS Nano 8, 3567 (2014)Google Scholar
  39. 39.
    S. Biffi, R. Cerbino, G. Nava, F. Bomboi, F. Sciortino, T. Bellini, Soft Matter 11, 3132 (2015)ADSGoogle Scholar
  40. 40.
    L. Rovigatti, J. Russo, F. Romano, PatchyParticles: an educational Monte Carlo code to simulate patchy particles http://dx.doi.org/10.5281/zenodo.1153959 (2018)
  41. 41.
    E. Bianchi, P. Tartaglia, E. Zaccarelli, F. Sciortino, J. Chem. Phys. 128, 144504 (2008)ADSGoogle Scholar
  42. 42.
    L. Rovigatti, D. de las Heras, J.M. Tavares, M.M. Telo da Gama, F. Sciortino, J. Chem. Phys. 138, 164904 (2013)ADSGoogle Scholar
  43. 43.
    F. Romano, J. Russo, H. Tanaka, Phys. Rev. Lett. 113, 138303 (2014)ADSGoogle Scholar
  44. 44.
    C. Ggelein, G. Ngele, R. Tuinier, T. Gibaud, A. Stradner, P. Schurtenberger, J. Chem. Phys. 129, 085102 (2008)ADSGoogle Scholar
  45. 45.
    F. Sciortino, Eur. Phys. J. E 40, 3 (2017)Google Scholar
  46. 46.
    J. Russo, P. Tartaglia, F. Sciortino, J. Chem. Phys. 131, 014504 (2009)ADSGoogle Scholar
  47. 47.
    S. Roldan-Vargas, L. Rovigatti, F. Sciortino, Soft Matter 13, 514 (2017)ADSGoogle Scholar
  48. 48.
    D.J. Audus, F. Starr, J. Douglas, Soft Matter 14, 1622 (2018)ADSGoogle Scholar
  49. 49.
    F. Romano, E. Sanz, F. Sciortino, J. Chem. Phys. 134, 174502 (2011)ADSGoogle Scholar
  50. 50.
    F. Romano, F. Sciortino, Soft Matter 7, 5799 (2011)ADSGoogle Scholar
  51. 51.
    W.L. Miller, A. Cacciuto, Phys. Rev. E 80, 021404 (2009)ADSGoogle Scholar
  52. 52.
    H. Rezvantalab, D.J. Beltran-Villegas, R.G. Larson, Phys. Rev. Lett. 117, 128001 (2016)ADSGoogle Scholar
  53. 53.
    N.A. Mahynski, L. Rovigatti, C.N. Likos, A.Z. Panagiotopoulos, ACS Nano 10, 5459 (2016)Google Scholar
  54. 54.
    M.S. Fernández, V.R. Misko, F.M. Peeters, Phys. Rev. E 92, 042309 (2015)ADSGoogle Scholar
  55. 55.
    I. Coluzza, P.D. van Oostrum, B. Capone, E. Reimhult, C. Dellago, Phys. Rev. Lett. 110, 075501 (2013)ADSGoogle Scholar
  56. 56.
    F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)ADSGoogle Scholar
  57. 57.
    V. Molinero, E.B. Moore, J. Phys. Chem. B 113, 4008 (2008)Google Scholar
  58. 58.
    C. Vega, J.L.F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011)Google Scholar
  59. 59.
    J. Russo, J.M. Tavares, P.I.C. Teixeira, M.M. Telo da Gama, F. Sciortino, Phys. Rev. Lett. 106, 085703 (2011)ADSGoogle Scholar
  60. 60.
    R.J. Speedy, P.G. Debenedetti, Mol. Phys. 81, 237 (1994)ADSGoogle Scholar
  61. 61.
    E. Zaccarelli, S.V. Buldyrev, E. La Nave, A.J. Moreno, I. Saika-Voivod, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 218301 (2005)ADSGoogle Scholar
  62. 62.
    N. Gnan, L. Rovigatti, M. Bergman, E. Zaccarelli, Macromolecules 50, 8777 (2017)ADSGoogle Scholar
  63. 63.
    L. Rovigatti, G. Nava, T. Bellini, F. Sciortino, Macromolecules 51, 1232 (2018)Google Scholar
  64. 64.
    B. Smit, D. Frenkel, Understanding Molecular Simulations (Academic, New York, 1996)Google Scholar
  65. 65.
    R.D. Mountain, D. Thirumalai, Physica A 210, 453 (1994)ADSGoogle Scholar
  66. 66.
    D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004)Google Scholar
  67. 67.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987)Google Scholar
  68. 68.
    M.P. Allen, G. Germano, Mol. Phys. 104, 3225 (2006)ADSGoogle Scholar
  69. 69.
    G. Ciccotti, J. Ryckaert, Comput. Phys. Rep. 4, 346 (1986)ADSGoogle Scholar
  70. 70.
    V. Krutler, W.F. van Gunsteren, P.H. Hnenberger, J. Comput. Chem. 22, 501 (2001)Google Scholar
  71. 71.
    B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, J. Comput. Chem. 18, 1463 (1997)Google Scholar
  72. 72.
    A. Dullweber, B. Leimkuhler, R. McLachlan, J. Chem. Phys. 107, 5840 (1997)ADSGoogle Scholar
  73. 73.
    J.F. Brady, G. Bossis, Ann. Rev. Fluid Mech. 20, 111 (1988)ADSGoogle Scholar
  74. 74.
    R.L. Davidchack, R. Handel, M.V. Tretyakov, J. Chem. Phys. 130, 234101 (2009)ADSGoogle Scholar
  75. 75.
    R.L. Davidchack, T.E. Ouldridge, M.V. Tretyakov, J. Chem. Phys. 147, 224103 (2017)ADSGoogle Scholar
  76. 76.
    W.M. Brown, A. Kohlmeyer, S.J. Plimpton, A.N. Tharrington, Comput. Phys. Commun. 183, 449 (2012)ADSGoogle Scholar
  77. 77.
    M.J. Abraham, T. Murtola, R. Schulz, S. Pll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1-2, 19 (2015)ADSGoogle Scholar
  78. 78.
    N.B. Wilding, J. Phys.: Condens. Matter 9, 585 (1997)ADSGoogle Scholar
  79. 79.
    J.J. Potoff, A.Z. Panagiotopoulos, J. Chem. Phys. 109, 10914 (1998)ADSGoogle Scholar
  80. 80.
    R.L.C. Vink, J. Horbach, J. Chem. Phys. 121, 3253 (2004)ADSGoogle Scholar
  81. 81.
    F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)ADSGoogle Scholar
  82. 82.
    B. Chen, J.I. Siepmann, J. Phys. Chem. B 104, 8725 (2000)Google Scholar
  83. 83.
    B. Chen, J.I. Siepmann, J. Phys. Chem. B 105, 11275 (2001)Google Scholar
  84. 84.
    S. Whitelam, P.L. Geissler, J. Chem. Phys. 127, 154101 (2007)ADSGoogle Scholar
  85. 85.
    A. Morriss-Andrews, J. Rottler, S.S. Plotkin, J. Chem. Phys. 132, 035105 (2010)ADSGoogle Scholar
  86. 86.
    P. Sulc, F. Romano, T.E. Ouldridge, L. Rovigatti, J.P.K. Doye, A.A. Louis, J. Chem. Phys. 137, 135101 (2012)ADSGoogle Scholar
  87. 87.
    S. Whitelam, E.H. Feng, M.F. Hagan, P.L. Geissler, Soft Matter 5, 1251 (2009)ADSGoogle Scholar
  88. 88.
    S. Ruzicka, M.P. Allen, Phys. Rev. E 89, 033307 (2014)ADSGoogle Scholar
  89. 89.
    Z. Zhang, S.C. Glotzer, Nano Lett. 4, 1407 (2004)ADSGoogle Scholar
  90. 90.
    S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)Google Scholar
  91. 91.
    F. Sciortino, in Proceedings of the International School of Physics “Enrico Fermi”, Course 193, Soft Matter Self-Assembly, edited by C.N. Likos (IOS Press, Amsterdam and SIF, Bologna, 2016) pp. 1--17Google Scholar
  92. 92.
    F. Sciortino, E. Bianchi, J.F. Douglas, P. Tartaglia, J. Chem. Phys. 126, 194903 (2007)ADSGoogle Scholar
  93. 93.
    I. Saika-Voivod, F. Romano, F. Sciortino, J. Chem. Phys. 135, 124506 (2011)ADSGoogle Scholar
  94. 94.
    F. Romano, E. Sanz, P. Tartaglia, F. Sciortino, J. Phys.: Condens. Matter 24, 064113 (2012)ADSGoogle Scholar
  95. 95.
    D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2014)Google Scholar
  96. 96.
    P. Virnau, M. Müller, J. Chem. Phys. 120, 10925 (2004)ADSGoogle Scholar
  97. 97.
    L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, M. Dijkstra, Phys. Rev. Lett. 103, 188302 (2009)ADSGoogle Scholar
  98. 98.
    J. de Graaf, R. van Roij, M. Dijkstra, Phys. Rev. Lett. 107, 155501 (2011)ADSGoogle Scholar
  99. 99.
    M. Marechal, R.J. Kortschot, A.F. Demirrs, A. Imhof, M. Dijkstra, Nano Lett. 10, 1907 (2010)ADSGoogle Scholar
  100. 100.
    T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, F. Sciortino, J. Chem. Phys. 138, 164505 (2013)ADSGoogle Scholar
  101. 101.
    G. Doppelbauer, E. Bianchi, G. Kahl, J. Phys.: Condens. Matter 22, 104105 (2010)ADSGoogle Scholar
  102. 102.
    G. Doppelbauer, E.G. Noya, E. Bianchi, G. Kahl, Soft Matter 8, 7768 (2012)ADSGoogle Scholar
  103. 103.
    E. Bianchi, G. Doppelbauer, L. Filion, M. Dijkstra, G. Kahl, J. Chem. Phys. 136, 214102 (2012)ADSGoogle Scholar
  104. 104.
    D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984)ADSGoogle Scholar
  105. 105.
    E.G. Noya, M.M. Conde, C. Vega, J. Chem. Phys. 129, 104704 (2008)ADSGoogle Scholar
  106. 106.
    C. Vega, E. Sanz, J. Abascal, E. Noya, J. Phys.: Condens. Matter 20, 153101 (2008)ADSGoogle Scholar
  107. 107.
    A. Laio, F.L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008)ADSGoogle Scholar
  108. 108.
    A. Barducci, G. Bussi, M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008)ADSGoogle Scholar
  109. 109.
    G.M. Torrie, J.P. Valleau, J. Comput. Phys. 23, 187 (1977)ADSGoogle Scholar
  110. 110.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 (Elsevier, 2001)Google Scholar
  111. 111.
    A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988)ADSGoogle Scholar
  112. 112.
    S. Prestipino, J. Chem. Phys. 148, 124505 (2018)ADSGoogle Scholar
  113. 113.
    D. Richard, T. Speck, J. Chem. Phys. 148, 124110 (2018)ADSGoogle Scholar
  114. 114.
    J. Russo, F. Romano, H. Tanaka, Nat. Mater. 13, 733 (2014)ADSGoogle Scholar
  115. 115.
    L. Rovigatti, J. Russo, F. Sciortino, Phys. Rev. Lett. 107, 237801 (2011)ADSGoogle Scholar
  116. 116.
    K.T. Nguyen, F. Sciortino, C. De Michele, Langmuir 30, 4814 (2014)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNR-ISCUos SapienzaRomaItaly
  2. 2.Dipartimento di FisicaSapienza Università di RomaRomaItaly
  3. 3.School of MathematicsUniversity of BristolBristolUK
  4. 4.Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca’ Foscari di VeneziaVenezia MestreItaly

Personalised recommendations