Advertisement

How to simulate patchy particles

  • Lorenzo RovigattiEmail author
  • John Russo
  • Flavio Romano
Colloquium
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems

Abstract.

Patchy particles is the name given to a large class of systems of mesoscopic particles characterized by a repulsive core and a discrete number of short-range and highly directional interaction sites. Numerical simulations have contributed significantly to our understanding of the behaviour of patchy particles, but, although simple in principle, advanced simulation techniques are often required to sample the low temperatures and long time-scales associated with their self-assembly behaviour. In this work we review the most popular simulation techniques that have been used to study patchy particles, with a special focus on Monte Carlo methods. We cover many of the tools required to simulate patchy systems, from interaction potentials to biased moves, cluster moves, and free-energy methods. The review is complemented by an educationally oriented Monte Carlo computer code that implements all the techniques described in the text to simulate a well-known tetrahedral patchy particle model.

Graphical abstract

Keywords

Topical issue: Advances in Computational Methods for Soft Matter Systems 

References

  1. 1.
    E. Bianchi, B. Capone, I. Coluzza, L. Rovigatti, P.D.J. van Oostrum, Phys. Chem. Chem. Phys. 19, 19847 (2017)CrossRefGoogle Scholar
  2. 2.
    I. Coluzza, PLoS ONE 9, e112852 (2014) arXiv:1406.4373v1ADSCrossRefGoogle Scholar
  3. 3.
    J.J. McManus, P. Charbonneau, E. Zaccarelli, N. Asherie, Curr. Opin. Colloid Interface Sci. 22, 73 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Cai, J.P. Townsend, T.C. Dodson, P.A. Heiney, A.M. Sweeney, Science 357, 564 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    D.C. Rapaport, Phys. Rev. Lett. 101, 186101 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Millan, D. Ortiz, S.C. Glotzer, Soft Matter 11, 1386 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C. De Michele, T. Bellini, F. Sciortino, Macromolecules 45, 1090 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    S. Whitelam, I. Tamblyn, J.P. Garrahan, P.H. Beton, Phys. Rev. Lett. 114, 1 (2015)CrossRefGoogle Scholar
  9. 9.
    F. Sciortino, Eur. Phys. J. B 64, 505 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Wang, Y. Wang, D.R. Breed, V.N. Manoharan, L. Feng, A.D. Hollingsworth, M. Weck, D.J. Pine, Nature 491, 51 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    G.-R. Yi, D.J. Pine, S. Sacanna, J. Phys.: Condens. Matter 25, 193101 (2013)ADSGoogle Scholar
  12. 12.
    W. Liu, M. Tagawa, H.L. Xin, T. Wang, H. Emamy, H. Li, K.G. Yager, F.W. Starr, A.V. Tkachenko, O. Gang, Science 351, 582 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Striolo, J. Kim, L. Liz-Marzán, L. Tadiello, M. Pauly, C. Murphy, A. Roig, D. Gracias, Y. Xia, J. Reguera et al., Faraday Discuss. 191, 117 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J. Zhang, B.A. Grzybowski, S. Granick, Langmuir 33, 6964 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Diaz, D. Pine, Bull. Am. Phys. Soc. (2018) http://meetings.aps.org/Meeting/MAR18/Session/K54.6
  16. 16.
    E. Bianchi, R. Blaak, C.N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Tavares, N. Almarza, M.T. da Gama, Soft Matter 11, 5828 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Tavares, C.S. Dias, N.A.M. Arajo, M.M. Telo da Gama, J. Phys. Chem. B 122, 3514 (2018)CrossRefGoogle Scholar
  19. 19.
    P.I.C. Teixeira, J. Tavares, Curr. Opin. Colloid Interface Sci. 30, 16 (2017)CrossRefGoogle Scholar
  20. 20.
    Q. Chen, S.C. Bae, S. Granick, Nature 469, 381 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Iwashita, Y. Kimura, Soft Matter 9, 10694 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    S. Biffi, R. Cerbino, F. Bomboi, E.M. Paraboschi, R. Asselta, F. Sciortino, T. Bellini, Proc. Natl. Acad. Sci. U.S.A. 110, 15633 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    F. Bomboi, F. Romano, M. Leo, J. Fernandez-Castanon, R. Cerbino, T. Bellini, F. Bordi, P. Filetici, F. Sciortino, Nat. Commun. 7, 13191 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    W. Liu, N.A. Mahynski, O. Gang, A.Z. Panagiotopoulos, S.K. Kumar, ACS Nano 11, 4950 (2017)CrossRefGoogle Scholar
  25. 25.
    N. Kern, D. Frenkel, J. Chem. Phys. 118, 9882 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, A.S. Keys, T. Chen, S.C. Glotzer, Langmuir 21, 11547 (2005)CrossRefGoogle Scholar
  27. 27.
    E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    J.P.K. Doye, A.A. Louis, I.-C. Lin, L.R. Allen, E.G. Noya, A.W. Wilber, H.C. Kok, R. Lyus, Phys. Chem. Chem. Phys. 9, 2197 (2007)CrossRefGoogle Scholar
  29. 29.
    E.G. Noya, C. Vega, J.P.K. Doye, A.A. Louis, J. Chem. Phys. 132, 234511 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    E. Bianchi, G. Kahl, C.N. Likos, Soft Matter 7, 8313 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A.B. Pawar, I. Kretzschmar, Langmuir 25, 9057 (2009)CrossRefGoogle Scholar
  32. 32.
    D.J. Kraft, J. Hilhorst, M.A.P. Heinen, M.J. Hoogenraad, B. Luigjes, W.K. Kegel, J. Phys. Chem. B 115, 7175 (2011)CrossRefGoogle Scholar
  33. 33.
    P.D.J. van Oostrum, M. Hejazifar, C. Niedermayer, E. Reimhult, J. Phys.: Condens. Matter 27, 234105 (2015)ADSGoogle Scholar
  34. 34.
    T. Tigges, D. Hoenders, A. Walther, Small 11, 4540 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    S. Roldán-Vargas, F. Smallenburg, W. Kob, F. Sciortino, Sci. Rep. 3, 2451 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    L. Rovigatti, V. Bianco, J.M. Tavares, F. Sciortino, J. Chem. Phys. 146, 041103 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    F. Smallenburg, F. Sciortino, Nat. Phys. 9, 554 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ACS Nano 8, 3567 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Biffi, R. Cerbino, G. Nava, F. Bomboi, F. Sciortino, T. Bellini, Soft Matter 11, 3132 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    L. Rovigatti, J. Russo, F. Romano, PatchyParticles: an educational Monte Carlo code to simulate patchy particles http://dx.doi.org/10.5281/zenodo.1153959 (2018)
  41. 41.
    E. Bianchi, P. Tartaglia, E. Zaccarelli, F. Sciortino, J. Chem. Phys. 128, 144504 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    L. Rovigatti, D. de las Heras, J.M. Tavares, M.M. Telo da Gama, F. Sciortino, J. Chem. Phys. 138, 164904 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    F. Romano, J. Russo, H. Tanaka, Phys. Rev. Lett. 113, 138303 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    C. Ggelein, G. Ngele, R. Tuinier, T. Gibaud, A. Stradner, P. Schurtenberger, J. Chem. Phys. 129, 085102 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    F. Sciortino, Eur. Phys. J. E 40, 3 (2017)CrossRefGoogle Scholar
  46. 46.
    J. Russo, P. Tartaglia, F. Sciortino, J. Chem. Phys. 131, 014504 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    S. Roldan-Vargas, L. Rovigatti, F. Sciortino, Soft Matter 13, 514 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    D.J. Audus, F. Starr, J. Douglas, Soft Matter 14, 1622 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    F. Romano, E. Sanz, F. Sciortino, J. Chem. Phys. 134, 174502 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    F. Romano, F. Sciortino, Soft Matter 7, 5799 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    W.L. Miller, A. Cacciuto, Phys. Rev. E 80, 021404 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    H. Rezvantalab, D.J. Beltran-Villegas, R.G. Larson, Phys. Rev. Lett. 117, 128001 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    N.A. Mahynski, L. Rovigatti, C.N. Likos, A.Z. Panagiotopoulos, ACS Nano 10, 5459 (2016)CrossRefGoogle Scholar
  54. 54.
    M.S. Fernández, V.R. Misko, F.M. Peeters, Phys. Rev. E 92, 042309 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    I. Coluzza, P.D. van Oostrum, B. Capone, E. Reimhult, C. Dellago, Phys. Rev. Lett. 110, 075501 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)ADSCrossRefGoogle Scholar
  57. 57.
    V. Molinero, E.B. Moore, J. Phys. Chem. B 113, 4008 (2008)CrossRefGoogle Scholar
  58. 58.
    C. Vega, J.L.F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011)CrossRefGoogle Scholar
  59. 59.
    J. Russo, J.M. Tavares, P.I.C. Teixeira, M.M. Telo da Gama, F. Sciortino, Phys. Rev. Lett. 106, 085703 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    R.J. Speedy, P.G. Debenedetti, Mol. Phys. 81, 237 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    E. Zaccarelli, S.V. Buldyrev, E. La Nave, A.J. Moreno, I. Saika-Voivod, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 218301 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    N. Gnan, L. Rovigatti, M. Bergman, E. Zaccarelli, Macromolecules 50, 8777 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    L. Rovigatti, G. Nava, T. Bellini, F. Sciortino, Macromolecules 51, 1232 (2018)CrossRefADSGoogle Scholar
  64. 64.
    B. Smit, D. Frenkel, Understanding Molecular Simulations (Academic, New York, 1996)Google Scholar
  65. 65.
    R.D. Mountain, D. Thirumalai, Physica A 210, 453 (1994)ADSCrossRefGoogle Scholar
  66. 66.
    D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004)Google Scholar
  67. 67.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987)Google Scholar
  68. 68.
    M.P. Allen, G. Germano, Mol. Phys. 104, 3225 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    G. Ciccotti, J. Ryckaert, Comput. Phys. Rep. 4, 346 (1986)ADSCrossRefGoogle Scholar
  70. 70.
    V. Krutler, W.F. van Gunsteren, P.H. Hnenberger, J. Comput. Chem. 22, 501 (2001)CrossRefGoogle Scholar
  71. 71.
    B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, J. Comput. Chem. 18, 1463 (1997)CrossRefGoogle Scholar
  72. 72.
    A. Dullweber, B. Leimkuhler, R. McLachlan, J. Chem. Phys. 107, 5840 (1997)ADSCrossRefGoogle Scholar
  73. 73.
    J.F. Brady, G. Bossis, Ann. Rev. Fluid Mech. 20, 111 (1988)ADSCrossRefGoogle Scholar
  74. 74.
    R.L. Davidchack, R. Handel, M.V. Tretyakov, J. Chem. Phys. 130, 234101 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    R.L. Davidchack, T.E. Ouldridge, M.V. Tretyakov, J. Chem. Phys. 147, 224103 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    W.M. Brown, A. Kohlmeyer, S.J. Plimpton, A.N. Tharrington, Comput. Phys. Commun. 183, 449 (2012)ADSCrossRefGoogle Scholar
  77. 77.
    M.J. Abraham, T. Murtola, R. Schulz, S. Pll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1-2, 19 (2015)ADSCrossRefGoogle Scholar
  78. 78.
    N.B. Wilding, J. Phys.: Condens. Matter 9, 585 (1997)ADSGoogle Scholar
  79. 79.
    J.J. Potoff, A.Z. Panagiotopoulos, J. Chem. Phys. 109, 10914 (1998)ADSCrossRefGoogle Scholar
  80. 80.
    R.L.C. Vink, J. Horbach, J. Chem. Phys. 121, 3253 (2004)ADSCrossRefGoogle Scholar
  81. 81.
    F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)ADSCrossRefGoogle Scholar
  82. 82.
    B. Chen, J.I. Siepmann, J. Phys. Chem. B 104, 8725 (2000)CrossRefGoogle Scholar
  83. 83.
    B. Chen, J.I. Siepmann, J. Phys. Chem. B 105, 11275 (2001)CrossRefGoogle Scholar
  84. 84.
    S. Whitelam, P.L. Geissler, J. Chem. Phys. 127, 154101 (2007)ADSCrossRefGoogle Scholar
  85. 85.
    A. Morriss-Andrews, J. Rottler, S.S. Plotkin, J. Chem. Phys. 132, 035105 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    P. Sulc, F. Romano, T.E. Ouldridge, L. Rovigatti, J.P.K. Doye, A.A. Louis, J. Chem. Phys. 137, 135101 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    S. Whitelam, E.H. Feng, M.F. Hagan, P.L. Geissler, Soft Matter 5, 1251 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    S. Ruzicka, M.P. Allen, Phys. Rev. E 89, 033307 (2014)ADSCrossRefGoogle Scholar
  89. 89.
    Z. Zhang, S.C. Glotzer, Nano Lett. 4, 1407 (2004)ADSCrossRefGoogle Scholar
  90. 90.
    S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)CrossRefGoogle Scholar
  91. 91.
    F. Sciortino, in Proceedings of the International School of Physics “Enrico Fermi”, Course 193, Soft Matter Self-Assembly, edited by C.N. Likos (IOS Press, Amsterdam and SIF, Bologna, 2016) pp. 1--17Google Scholar
  92. 92.
    F. Sciortino, E. Bianchi, J.F. Douglas, P. Tartaglia, J. Chem. Phys. 126, 194903 (2007)ADSCrossRefGoogle Scholar
  93. 93.
    I. Saika-Voivod, F. Romano, F. Sciortino, J. Chem. Phys. 135, 124506 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    F. Romano, E. Sanz, P. Tartaglia, F. Sciortino, J. Phys.: Condens. Matter 24, 064113 (2012)ADSGoogle Scholar
  95. 95.
    D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2014)Google Scholar
  96. 96.
    P. Virnau, M. Müller, J. Chem. Phys. 120, 10925 (2004)ADSCrossRefGoogle Scholar
  97. 97.
    L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, M. Dijkstra, Phys. Rev. Lett. 103, 188302 (2009)ADSCrossRefGoogle Scholar
  98. 98.
    J. de Graaf, R. van Roij, M. Dijkstra, Phys. Rev. Lett. 107, 155501 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    M. Marechal, R.J. Kortschot, A.F. Demirrs, A. Imhof, M. Dijkstra, Nano Lett. 10, 1907 (2010)ADSCrossRefGoogle Scholar
  100. 100.
    T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, F. Sciortino, J. Chem. Phys. 138, 164505 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    G. Doppelbauer, E. Bianchi, G. Kahl, J. Phys.: Condens. Matter 22, 104105 (2010)ADSGoogle Scholar
  102. 102.
    G. Doppelbauer, E.G. Noya, E. Bianchi, G. Kahl, Soft Matter 8, 7768 (2012)ADSCrossRefGoogle Scholar
  103. 103.
    E. Bianchi, G. Doppelbauer, L. Filion, M. Dijkstra, G. Kahl, J. Chem. Phys. 136, 214102 (2012)ADSCrossRefGoogle Scholar
  104. 104.
    D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984)ADSCrossRefGoogle Scholar
  105. 105.
    E.G. Noya, M.M. Conde, C. Vega, J. Chem. Phys. 129, 104704 (2008)ADSCrossRefGoogle Scholar
  106. 106.
    C. Vega, E. Sanz, J. Abascal, E. Noya, J. Phys.: Condens. Matter 20, 153101 (2008)ADSGoogle Scholar
  107. 107.
    A. Laio, F.L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008)ADSCrossRefGoogle Scholar
  108. 108.
    A. Barducci, G. Bussi, M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008)ADSCrossRefGoogle Scholar
  109. 109.
    G.M. Torrie, J.P. Valleau, J. Comput. Phys. 23, 187 (1977)ADSCrossRefGoogle Scholar
  110. 110.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 (Elsevier, 2001)Google Scholar
  111. 111.
    A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988)ADSCrossRefGoogle Scholar
  112. 112.
    S. Prestipino, J. Chem. Phys. 148, 124505 (2018)ADSCrossRefGoogle Scholar
  113. 113.
    D. Richard, T. Speck, J. Chem. Phys. 148, 124110 (2018)ADSCrossRefGoogle Scholar
  114. 114.
    J. Russo, F. Romano, H. Tanaka, Nat. Mater. 13, 733 (2014)ADSCrossRefGoogle Scholar
  115. 115.
    L. Rovigatti, J. Russo, F. Sciortino, Phys. Rev. Lett. 107, 237801 (2011)ADSCrossRefGoogle Scholar
  116. 116.
    K.T. Nguyen, F. Sciortino, C. De Michele, Langmuir 30, 4814 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNR-ISCUos SapienzaRomaItaly
  2. 2.Dipartimento di FisicaSapienza Università di RomaRomaItaly
  3. 3.School of MathematicsUniversity of BristolBristolUK
  4. 4.Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca’ Foscari di VeneziaVenezia MestreItaly

Personalised recommendations