Advertisement

Effect of an insoluble surfactant on the dynamics of a thin liquid film flowing over a non-uniformly heated substrate

  • Ashna Srivastava
  • Naveen Tiwari
Regular Article

Abstract.

The stability analysis of a gravity-driven thin liquid film with an insoluble surfactant flowing over a surface with embedded, regularly spaced heaters is investigated. At the leading edge of a heater, the presence of a temperature gradient induces an opposing Marangoni stress at the interface leading to the formation of a capillary ridge. This ridge has been shown to be susceptible to thermocapillary (oscillating in the flow direction) and rivulet (spanwise periodic pattern) instabilities. The presence of an insoluble surfactant is shown to have a stabilizing effect on this system. The governing equations for the evolution of the film thickness and surfactant concentration are obtained within the lubrication approximation. The coupled two-dimensional base solutions for the film thickness and surfactant concentration show that there is no significant change in the height of the capillary ridge at the subsequent heaters downstream. The height of the capillary ridge is reduced by the presence of the surfactant. For very small Peclet number, the presence of multiple heaters has almost no significant effect on the film stability as compared to a single heater and similar trends are observed between the two configurations in the presence of the surfactant as for the case of a clean interface. However, for large Peclet number, the effect was observed on both types of instabilities for certain heater configurations. The Biot number is shown to have a strong effect on the stability results wherein the dominant mode of instability is altered (from rivulet to thermocapillary instability) for a passive or no surfactant case with increase in the Biot number. For an active surfactant thermocapillary instability is found to remain the dominant mode of instability for all the values of the Biot number. It is shown that increasing the number of heaters beyond a couple does not further affect the stability results.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    V.G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962)Google Scholar
  2. 2.
    S.H. Davis, Annu. Rev. Fluid Mech. 19, 403 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    M. Dietzel, S.M. Troian, Phys. Rev. Lett. 103, 074501 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    O.A. Kabov, I.V. Marchuk, V.M. Chupin, Russ. J. Eng. Thermophys. 6, 105 (1996)Google Scholar
  5. 5.
    O.A. Kabov, J.C. Legros, I.V. Marchuk, B. Scheid, Fluid Dyn. 36, 521 (2001)CrossRefGoogle Scholar
  6. 6.
    O.A. Kabov, B. Scheid, I.A. Sharina, J.C. Legros, Int. J. Therm. Sci. 41, 664 (2002)CrossRefGoogle Scholar
  7. 7.
    A.M. Frank, Eur. J. Mech. B/Fluids 22, 445 (2003)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.M. Skotheim, U. Thiele, B. Scheid, J. Fluid Mech. 475, 1 (2003)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Kalliadasis, A. Kiyashko, E.A. Demekhin, J. Fluid Mech. 475, 377 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Frank, O.A. Kabov, Phys. Fluids 18, 032107 (2006)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    N. Tiwari, A. Awasthi, J.M. Davis, Phys. Fluids 26, 042105 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Y.O. Kabova, V.V. Kuznetsov, O.A. Kabov, Microgravity Sci. Technol. 19, 53 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    N. Tiwari, Z. Mester, J.M. Davis, Phys. Rev. E 76, 056306 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    N. Tiwari, J.M. Davis, Phys. Fluids 21, 022105 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    N. Tiwari, J.M. Davis, Phys. Fluids 21, 102101 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    H.H. Katkar, J.M. Davis, J. Fluid Mech. 726, 656 (2013)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Liu, O.A. Kabov, Int. J. Heat Mass Transfer 65, 23 (2013)CrossRefGoogle Scholar
  18. 18.
    J.B. Grotberg, Annu. Rev. Fluid Mech. 26, 529 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    A.F.M. Leenaars, J.A.M. Huethorst, J.J. van Oekel, Langmuir 6, 1701 (1990)CrossRefGoogle Scholar
  20. 20.
    A. Sharma, E. Ruckenstein, J. Colloid Interface Sci. 111, 8 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    D. Edwards, H. Brenner, D.T. Wasan, Interfacial Transport Processes and Rheology (Butterworth-Heinemann, MA, 1991)Google Scholar
  22. 22.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    S. Whitaker, Ind. Eng. Chem. Fundam. 3, 132 (1964)CrossRefGoogle Scholar
  25. 25.
    B.E. Anshus, A. Acrivos, Chem. Eng. Sci. 22, 389 (1967)CrossRefGoogle Scholar
  26. 26.
    S.P. Lin, AIChE J. 16, 375 (1970)CrossRefGoogle Scholar
  27. 27.
    A.D. Wit, D. Gallez, C.I. Christov, Phys. Fluids 6, 3256 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    K.D. Danov, N. Alleborn, H. Raszillier, F. Durst, Phys. Fluids 10, 131 (1998)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    K.D. Danov, V.N. Paunov, N. Alleborn, H. Raszillier, F. Durst, Chem. Eng. Sci. 53, 2809 (1998)CrossRefGoogle Scholar
  30. 30.
    K.D. Danov, V.N. Paunov, S.D. Stoyanov, N. Alleborn, H. Raszillier, F. Durst, Chem. Eng. Sci. 53, 2823 (1998)CrossRefGoogle Scholar
  31. 31.
    V.N. Paunov, K.D. Danov, N. Alleborn, H. Raszillier, F. Durst, Chem. Eng. Sci. 53, 2839 (1998)CrossRefGoogle Scholar
  32. 32.
    M.G. Blyth, C. Pozrikidis, J. Fluid Mech. 521, 241 (2004)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    B.D. Edmonstone, O.K. Matar, J. Colloid Interface Sci. 274, 183 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Ding, T.N. Wong, Int. J. Heat Mass Transfer 67, 627 (2013)CrossRefGoogle Scholar
  35. 35.
    W.M. Deen, Analysis of Transport Phenomena (Oxford University Press, New York, 1998)Google Scholar
  36. 36.
    B.D. Edmonstone, O.K. Matar, R.V. Craster, J. Eng. Math. 50, 141 (2004)CrossRefGoogle Scholar
  37. 37.
    L.G. Leal, Advanced Transport Phenomena (Cambridge University Press, New York, 2007)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations