Advertisement

Structural-dynamical transition in the Wahnström mixture

  • Francesco Turci
  • Thomas Speck
  • C. Patrick Royall
Open Access
Regular Article
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems

Abstract.

In trajectory space, dynamical heterogeneities in glass-forming liquids correspond to the emergence of a dynamical phase transition between an active phase poor in local structure and an inactive phase which is rich in local structure. We support this scenario with the study of a model additive mixture of Lennard-Jones particles, quantifying how the choice of the relevant structural and dynamical observable affects the transition in trajectory space. We find that the low mobility, structure-rich phase is dominated by icosahedral order. Applying a non-equilibrium rheological protocol, we connect local order to the emergence of mechanical rigidity.

Graphical abstract

Keywords

Topical issue: Advances in Computational Methods for Soft Matter Systems 

References

  1. 1.
    A. Cavagna, Phys. Rep. 476, 51 (2009)CrossRefADSGoogle Scholar
  2. 2.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)CrossRefADSGoogle Scholar
  3. 3.
    C.P. Royall, S.R. Williams, Phys. Rep. 560, 1 (2015)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    S. Torquato, T.M. Truskett, P.G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000)CrossRefADSGoogle Scholar
  5. 5.
    A. Montanari, G. Semerjian, J. Stat. Phys. 125, 23 (2006)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    G.M. Hocky, L. Berthier, W. Kob, D. Reichman, Phys. Rev. E 89, 052311 (2014)CrossRefADSGoogle Scholar
  7. 7.
    C.P. Royall, A. Malins, A.J. Dunleavy, R. Pinney, J. Non-Cryst. Solids 407, 34 (2015)CrossRefADSGoogle Scholar
  8. 8.
    C.P. Royall, S.R. Williams, T. Ohtsuka, H. Tanaka, Nat. Mater. 7, 556 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Peter Wochner, Christian Gutt, Tina Autenrieth, Thomas Demmer, Volodymyr Bugaev, Alejandro Díaz Ortiz, Agnès Duri, Federico Zontone, Gerhard Grübel, Helmut Dosch, Proc. Natl. Acad. Sci. U.S.A. 106, 11511 (2009)CrossRefADSGoogle Scholar
  10. 10.
    M. Leocmach, H. Tanaka, Nat. Commun. 3, 974 (2012)CrossRefADSGoogle Scholar
  11. 11.
    C. Patrick Royall, Stephen R. Williams, Hajime Tanaka, J. Chem. Phys. 148, 044501 (2018)CrossRefADSGoogle Scholar
  12. 12.
    H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Nature 439, 419 (2006)CrossRefADSGoogle Scholar
  13. 13.
    C. Chen, O. Cook, C.E. Nicholson, S.J. Cooper, Cryst. Growth Des. 11, 2228 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Hirata, L.J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A.R. Yavari, M.W. Chen, Science 341, 376 (2013)CrossRefADSGoogle Scholar
  15. 15.
    S. Gokhale, K.H. Nagamanasa, R. Ganapathy, A.K. Sood, Nat. Commun. 5, 4685 (2014)CrossRefGoogle Scholar
  16. 16.
    V. Chikkadi, D.M. Miedema, M.T. Dang, B. Nienhuis, P. Schall, Phys. Rev. Lett. 113, 208301 (2014)CrossRefADSGoogle Scholar
  17. 17.
    J.D. Bernal, Nature 183, 141 (1959)CrossRefADSGoogle Scholar
  18. 18.
    J.D. Bernal, Nature 185, 68 (1960)CrossRefADSGoogle Scholar
  19. 19.
    J.L. Finney, Proc. R. Soc. A 319, 479 (1970)CrossRefADSGoogle Scholar
  20. 20.
    J.L. Finney, Proc. R. Soc. A 319, 495 (1970)CrossRefADSGoogle Scholar
  21. 21.
    D.R. Nelson, Phys. Rev. Lett. 50, 982 (1983)CrossRefADSGoogle Scholar
  22. 22.
    G. Tarjus, S.A. Kivelson, Z. Nussinov, P. Viot, J. Phys.: Condens. Matter 17, R1143 (2005)ADSGoogle Scholar
  23. 23.
    David Chandler, Juan P. Garrahan, Annu. Rev. Condens. Matter Phys. 61, 191 (2010)Google Scholar
  24. 24.
    J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)CrossRefADSGoogle Scholar
  25. 25.
    V. Lubchenko, P. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007)CrossRefADSGoogle Scholar
  26. 26.
    Vassiliy Lubchenko, Adv. Phys. 64, 283 (2015)CrossRefGoogle Scholar
  27. 27.
    L. Berthier, M.D. Ediger, Phys. Today 69, 40 (2016) issue No. 1CrossRefGoogle Scholar
  28. 28.
    C. Cammarota, G. Biroli, Proc. Natl. Acad. Sci. U.S.A. 109, 8850 (2012)CrossRefADSGoogle Scholar
  29. 29.
    W. Kob, L. Berthier, Phys. Rev. Lett. 110, 245702 (2013)CrossRefADSGoogle Scholar
  30. 30.
    Walter Kob, Daniele Coslovich, Phys. Rev. E 90, 052305 (2014)Google Scholar
  31. 31.
    Ludovic Berthier, Daniele Coslovich, Andrea Ninarello, Misaki Ozawa, Phys. Rev. Lett. 116, 238002 (2016)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    A. Ninarello, L. Berthier, D. Coslovich, Phys. Rev. X 7, 021039 (2017)Google Scholar
  33. 33.
    L.O. Hedges, R.L. Jack, J.P. Garrahan, D. Chandler, Science 323, 1309 (2009)CrossRefADSGoogle Scholar
  34. 34.
    T. Speck, A. Malins, C.P. Royall, Phys. Rev. Lett. 109, 195703 (2012)CrossRefADSGoogle Scholar
  35. 35.
    F. Turci, C.P. Royall, T. Speck, Phys. Rev. X 7, 031028 (2017)Google Scholar
  36. 36.
    J.P. Garrahan, R.L. Jack, E. Lecomte, V. amd Pitard, K. van Duijvendijk, F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007)CrossRefADSGoogle Scholar
  37. 37.
    A.S. Keys, L.O. Hedges, J.P. Garrahan, S.C. Glotzer, D. Chandler, Phys. Rev. X 1, 021013 (2011)Google Scholar
  38. 38.
    Y.S. Elmatad, D. Chandler, J.P. Garrahan, J. Phys. Chem. B 113, 5563 (2009)CrossRefGoogle Scholar
  39. 39.
    Francesco Turci, Estelle Pitard, EPL 94, 10003 (2011)CrossRefGoogle Scholar
  40. 40.
    Takahiro Nemoto, Robert L. Jack, Vivien Lecomte, Phys. Rev. Lett. 118, 115702 (2017)CrossRefADSGoogle Scholar
  41. 41.
    R.L. Jack, L.O. Hedges, J.P. Garrahan, D. Chandler, Phys. Rev. Lett. 107, 275702 (2011)CrossRefADSGoogle Scholar
  42. 42.
    Estelle Pitard, Vivien Lecomte, Frédéric Van Wijland, EPL 96, 56002 (2011)CrossRefADSGoogle Scholar
  43. 43.
    Masaharu Isobe, Aaron S. Keys, David Chandler, Juan P. Garrahan, Phys. Rev. Lett. 117, 145701 (2016)CrossRefADSGoogle Scholar
  44. 44.
    T. Speck, D. Chandler, J. Chem. Phys. 136, 184509 (2012)CrossRefADSGoogle Scholar
  45. 45.
    Rattachai Pinchaipat, Matteo Campo, Francesco Turci, James E. Hallett, Thomas Speck, C. Patrick Royall, Phys. Rev. Lett. 119, 028004 (2017)CrossRefADSGoogle Scholar
  46. 46.
    G.M. Hocky, D. Coslovich, A. Ikeda, D. Reichman, Phys. Rev. Lett. 113, 157801 (2014)CrossRefADSGoogle Scholar
  47. 47.
    Göran Wahnström, Phys. Rev. A 44, 3752 (1991)CrossRefGoogle Scholar
  48. 48.
    A. Malins, J. Eggers, C.P. Royall, S.R. Williams, H. Tanaka, J. Chem. Phys. 138, 12A535 (2013)CrossRefGoogle Scholar
  49. 49.
    R. Pinney, T.B. Liverpool, C.P. Royall, J. Chem. Phys. 143, 244507 (2015)CrossRefADSGoogle Scholar
  50. 50.
    Thomas Jenkinson, Peter Crowther, Francesco Turci, C. Patrick Royall, J. Chem. Phys. 147, 054501 (2017)CrossRefADSGoogle Scholar
  51. 51.
    Daniele Coslovich, Phys. Rev. E 83, 8 (2011)Google Scholar
  52. 52.
    D. Coslovich, G. Pastore, J. Chem. Phys. 127, 124504 (2007)CrossRefADSGoogle Scholar
  53. 53.
    F. Turci, G. Tarjus, C.P. Royall, Phys. Rev. Lett. 118, 215501 (2017)MathSciNetCrossRefADSGoogle Scholar
  54. 54.
    U.R. Pedersen, T.B. Schroder, J.C. Dyre, P. Harrowell, Phys. Rev. Lett. 104, 105701 (2010)CrossRefADSGoogle Scholar
  55. 55.
    P.G. Bolhuis, D. Chandler, C. Dellago, P.L. Geissler, Ann. Rev. Phys. Chem. 53, 291 (2002)CrossRefADSGoogle Scholar
  56. 56.
    David D.L. Minh, John D. Chodera, J. Chem. Phys. 131, 134110 (2009)CrossRefADSGoogle Scholar
  57. 57.
    A. Malins, S.R. Williams, J. Eggers, C.P. Royall, J. Chem. Phys. 139, 234506 (2013)CrossRefADSGoogle Scholar
  58. 58.
    C.P. Royall, W. Kob, J. Stat. Mech.: Theor. Exp. 2017, 024001 (2017)CrossRefGoogle Scholar
  59. 59.
    D. Coslovich, R.L. Jack, J. Stat. Mech.: Theor. Exp. 2016, 074012 (2016)CrossRefGoogle Scholar
  60. 60.
    Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, Peter Gumbsch, Phys. Rev. Lett. 97, 170201 (2006)CrossRefGoogle Scholar
  61. 61.
    Hugo Touchette, to be published in Physica A (2017)  https://doi.org/10.1016/j.physa.2017.10.046
  62. 62.
    K. Kim, S. Saito, J. Chem. Phys. 138, 12A506 (2013)CrossRefGoogle Scholar
  63. 63.
    R.L. Jack, J.P. Garrahan, Phys. Rev. E 81, 011111 (2010)CrossRefADSGoogle Scholar
  64. 64.
    Raffaele Pastore, Antonio Coniglio, Massimo Pica Ciamarra, Sci. Rep. 5, 11770 (2015)CrossRefGoogle Scholar
  65. 65.
    Raffaele Pastore, Antonio Coniglio, Antonio de Candia, Annalisa Fierro, M. Pica Ciamarra, J. Stat. Mech.: Theor. Exp. 2016, 054050 (2016)CrossRefGoogle Scholar
  66. 66.
    C. Maloney, A. Lemaitre, Phys. Rev. Lett. 93, 016001 (2004)CrossRefADSGoogle Scholar
  67. 67.
    C.E. Maloney, A. Lemaitre, Phys. Rev. E 74, 016118 (2006)CrossRefADSGoogle Scholar
  68. 68.
    Y.S. Elmatad, R.L. Jack, D. Chandler, J.P. Garrahan, Proc. Natl. Acad. Sci. U.S.A. 107, 12793 (2010)CrossRefADSGoogle Scholar
  69. 69.
    R. Pinney, T.B. Liverpool, C.P. Royall, J. Chem. Phys. 145, 234501 (2016)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Francesco Turci
    • 1
    • 2
  • Thomas Speck
    • 3
  • C. Patrick Royall
    • 1
    • 2
    • 4
  1. 1.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK
  2. 2.Centre for Nanoscience and Quantum InformationBristolUK
  3. 3.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.School of ChemistryUniversity of BristolBristolUK

Personalised recommendations