Dynamics of a polyelectrolyte through aerolysin channel as a function of applied voltage and concentration

  • Manuela Pastoriza-Gallego
  • Bénédicte Thiébot
  • Laurent Bacri
  • Loïc Auvray
  • Juan Pelta
Regular Article
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)

Abstract.

We describe the behaviour of a polyelectrolyte in confined geometry. The transport of a polyelectrolyte, dextran sulfate, through a recombinant protein channel, aerolysin, inserted into a planar lipid bilayer is studied as a function of applied voltage and polyelectrolyte concentration and chain length. The aerolysin pore has a weak geometry asymmetry, a high number of charged residues and the polyelectrolyte is strongly negatively charged. The resulting current blockades were characterized by short and long dwelling times. Their frequency varies exponentially as a function of applied voltage and linearly as a function of polyelectrolyte concentration. The long blockade duration decreases exponentially when the electrical force increases. The ratio of the population of short events to the one of long events decreases when the applied voltage increases and displays an exponential variation. The long residence time increases with the polyelectrolyte chain length. We measure a reduction of the effective charge of the polyelectrolyte at the pore entry and inside the channel. For a fixed applied voltage, + / - 100 mV, at both sides of the protein pore entrance, the events frequency is similar as a function of dextran sulfate concentration. The mean blockade durations are independent of polyelectrolyte concentration and are similar for both entrances of the pore and remain constant as a function of the electrical force.

Graphical abstract

Keywords

Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 

References

  1. 1.
    G. Oukhaled, J. Mathé, A.-L. Biance, L. Bacri, J.-M. Betton, D. Lairez, J. Pelta, L. Auvray, Phys. Rev. Lett. 98, 158101 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J.-M. Betton, L. Auvray, J. Pelta, ACS Chem. Biol. 7, 652 (2012)CrossRefGoogle Scholar
  3. 3.
    L. Payet, M. Martinho, M. Pastoriza-Gallego, J.-M. Betton, L. Auvray, J. Pelta, J. Mathé, Anal. Chem. 84, 4071 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Pastoriza-Gallego, L. Rabah, G. Gibrat, B. Thiebot, F.G. van der Goot, L. Auvray, J.-M. Betton, J. Pelta, J. Am. Chem. Soc. 133, 2923 (2011)CrossRefGoogle Scholar
  5. 5.
    B. Cressiot, A. Oukhaled, G. Patriarche, M. Pastoriza-Gallego, J.-M. Betton, L. Auvray, M. Muthukumar, L. Bacri, J. Pelta, ACS Nano 6, 6236 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Oukhaled, L. Bacri, M. Pastoriza-Gallego, J.-M. Betton, J. Pelta, ACS Chem. Biol. 7, 1935 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Pastoriza-Gallego, M.-F. Breton, F. Discala, L. Auvray, J.-M. Betton, J. Pelta, ACS Nano 8, 11350 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Movileanu, Trends Biotechnol. 27, 333 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Majd, E.C. Yusko, Y.N. Billeh, M.X. Macrae, J. Yang, M. Mayer, Curr. Opin. Biotechnol. 21, 439 (2010)CrossRefGoogle Scholar
  10. 10.
    H. Wang, J. Ettedgui, J. Forstater, J.W.F. Robertson, J.E. Reiner, H. Zhang, S. Chen, J.J. Kasianowicz, ACS Sens. 3, 251 (2018)CrossRefGoogle Scholar
  11. 11.
    D. Deamer, M. Akeson, D. Branton, Nat. Biotechnol. 34, 518 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, D. Zheng, Q. Tan, M.X. Wang, L.-Q. Gu, Nat. Nanotechnol. 6, 668 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    G. Huang, K. Willems, M. Soskine, C. Wloka, G. Maglia, Nat. Commun. 8, 935 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    J. Nivala, D.B. Marks, M. Akeson, Nat. Biotechnol. 31, 247 (2013)CrossRefGoogle Scholar
  15. 15.
    J.W.F. Robertson, C.G. Rodrigues, V.M. Stanford, K.A. Rubinson, O.V. Krasilnikov, J.J. Kasianowicz, Proc. Natl. Acad. Sci. U.S.A. 104, 8207 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    C. Cao, Y.-L. Ying, Z.-L. Hu, D.-F. Liao, H. Tian, Y.-T. Long, Nat. Nanotechnol. 11, 713 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    F. Piguet, H. Oudali, M. Pastoriza-Gallego, P. Manivet, J. Pelta, A. Oukhaled, Nat. Commun. 9, 966 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    W. Sung, P.J. Park, Phys. Rev. Lett. 77, 783 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Kantor, M. Kardar, Phys. Rev. E 69, 21806 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    E. Slonkina, A.B. Kolomeisky, J. Chem. Phys. 118, 7112 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    M. Muthukumar, Polymer Translocation (CRC Press, 2011)Google Scholar
  23. 23.
    O. Flomenbom, J. Klafter, Phys. Rev. E 68, 41910 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    A. Cacciuto, E. Luijten, Phys. Rev. Lett. 96, 238104 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    S. Matysiak, A. Montesi, M. Pasquali, A.B. Kolomeisky, C. Clementi, Phys. Rev. Lett. 96, 118103 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    H.H. Katkar, M. Muthukumar, J. Chem. Phys. 148, 24903 (2018)CrossRefGoogle Scholar
  27. 27.
    J. Zimmerberg, V.A. Parsegian, Nature 323, 36 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    M. Montal, P. Mueller, Proc. Natl. Acad. Sci. U.S.A. 69, 478 (1972)CrossRefGoogle Scholar
  29. 29.
    J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    L. Brun, M. Pastoriza-Gallego, G. Oukhaled, J. Mathé, L. Bacri, L. Auvray, J. Pelta, Phys. Rev. Lett. 100, 158302 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    G. Gibrat, M. Pastoriza-Gallego, B. Thiebot, M.-F. Breton, L. Auvray, J. Pelta, J. Phys. Chem. B 112, 14687 (2008)CrossRefGoogle Scholar
  32. 32.
    S.E. Henrickson, M. Misakian, B. Robertson, J.J. Kasianowicz, Phys. Rev. Lett. 85, 3057 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    B. Cressiot, E. Braselmann, A. Oukhaled, A.H. Elcock, J. Pelta, P.L. Clark, ACS Nano 9, 9050 (2015)CrossRefGoogle Scholar
  34. 34.
    L. Payet, M. Martinho, C. Merstorf, M. Pastoriza-Gallego, J. Pelta, V. Viasnoff, L. Auvray, M. Muthukumar, J. Mathé, Biophys. J. 109, 1600 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    R.J. Murphy, M. Muthukumar, J. Chem. Phys. 126, 51101 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    M. Fivaz, L. Abrami, Y. Tsitrin, F.G. van der Goot, Curr. Top. Microbiol. Immunol. 257, 35 (2001)Google Scholar
  37. 37.
    L. Abrami, M. Fivaz, E. Decroly, N.G. Seidah, F. Jean, G. Thomas, S.H. Leppla, J.T. Buckley, F.G. van der Goot, J. Biol. Chem. 273, 32656 (1998)CrossRefGoogle Scholar
  38. 38.
    M.W. Parker, J.T. Buckley, J.P.M. Postma, A.D. Tucker, K. Leonard, F. Pattus, D. Tsernoglou, Nature 367, 292 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    M.T. Degiacomi, I. Iacovache, L. Pernot, M. Chami, M. Kudryashev, H. Stahlberg, F.G. van der Goot, M. Dal Peraro, Nat. Chem. Biol. 9, 623 (2013)CrossRefGoogle Scholar
  40. 40.
    H.U. Wilmsen, F. Pattus, J.T. Buckley, J. Membr. Biol. 115, 71 (1990)CrossRefGoogle Scholar
  41. 41.
    M. Boukhet, F. Piguet, H. Ouldali, M. Pastoriza-Gallego, J. Pelta, A. Oukhaled, Nanoscale 8, 18352 (2016)CrossRefGoogle Scholar
  42. 42.
    C. Lesieur, S. Frutiger, G. Hughes, R. Kellner, F. Pattus, F.G. van der Goot, J. Biol. Chem. 274, 36722 (1999)CrossRefGoogle Scholar
  43. 43.
    R. Stefureac, Y.-T. Long, H.-B. Kraatz, P. Howard, J.S. Lee, Biochemistry 45, 9172 (2006)CrossRefGoogle Scholar
  44. 44.
    R.I. Stefureac, J.S. Lee, Small 4, 1646 (2008)CrossRefGoogle Scholar
  45. 45.
    C. Cao, J. Yu, Y.-Q. Wang, Y.-L. Ying, Y.-T. Long, Anal. Chem. 88, 5046 (2016)CrossRefGoogle Scholar
  46. 46.
    Z.-L. Hu, Z.-Y. Li, Y.-L. Ying, J. Zhang, C. Cao, Y.-T. Long, H. Tian, Anal. Chem. 90, 4268 (2018)CrossRefGoogle Scholar
  47. 47.
    G. Baaken, I. Halimeh, L. Bacri, J. Pelta, A. Oukhaled, J.C. Behrends, ACS Nano 9, 6443 (2015)CrossRefGoogle Scholar
  48. 48.
    C. Cao, J. Yu, M.-Y. Li, Y.-Q. Wang, H. Tian, Y.-T. Long, Small 13, 1702011 (2017)CrossRefGoogle Scholar
  49. 49.
    G. Oukhaled, L. Bacri, J. Mathé, J. Pelta, L. Auvray, EPL 82, 48003 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    M. Pastoriza-Gallego, G. Gibrat, B. Thiebot, J.-M. Betton, J. Pelta, Biochim. Biophys. Acta - Biomembranes 1788, 1377 (2009)CrossRefGoogle Scholar
  51. 51.
    J. Zhang, B.I. Shklovskii, Phys. Rev. E 75, 21906 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    J. Mathé, A. Aksimentiev, D.R. Nelson, K. Schulten, A. Meller, Proc. Natl. Acad. Sci. U.S.A. 102, 12377 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    L. Auvray, Sur quelques propriétés de solutions de macromolécules rigides et de polyélectrolytes dans un milieu poreux modèle, Thesis (1982)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Manuela Pastoriza-Gallego
    • 1
  • Bénédicte Thiébot
    • 1
  • Laurent Bacri
    • 2
  • Loïc Auvray
    • 3
  • Juan Pelta
    • 2
  1. 1.LAMBE UMR 8587Université Cergy-Pontoise, Université Paris-SeineCergy-PontoiseFrance
  2. 2.LAMBE UMR 8587Université Evry, CNRS, CEA, Université Paris-SaclayEvryFrance
  3. 3.Laboratoire Matière et Systèmes ComplexesUniversité Paris DiderotParisFrance

Personalised recommendations