Numerical simulation of wind-sand movement in the reversed flow region of a sand dune with a bridge built downstream

Regular Article
  • 29 Downloads

Abstract.

A bridge built inside the reversed flow region of a sand dune will change the characteristics of wind-sand movement in this region. The Reynolds-averaged Navier-Stokes simulation and discrete particle tracing are used to simulate the wind-sand movement around a sand dune with a bridge built inside the reversed region. Three cases with different bridge positions are studied. The results show that 1) compared with the isolated dune case, a tall bridge built at the leeward toe leads to an increase in the deposition rate on the leeward slope and a longer reversed flow region downstream of the sand dune; meanwhile, the high speed of crosswind on the bridge indicates that some measures should be taken to protect trains from strong crosswind; 2) a low bridge at the leeward toe has little effect on the sand deposition and reversed flow region of the dune; however, low sand transport rate and crosswind speed on the bridge show that anti-crosswind/sand measures should be taken according to the actual situation and 3) a low bridge on the leeward slope has little effect on the length of reversed flow region, however, high crosswind speed and sand flux on the bridge reveal the need of anti-crosswind/sand measures on the bridge. Moreover, the bridges in the reversed flow region increase the sand flux near the leeward crest; as a result, the moving patterns of the sand dune are changed.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    J.P. Zhang, Y.S. Wang, F.Q. Jiang, China Railw. Sci. 32, 14 (2011)Google Scholar
  2. 2.
    K.C. Zhang, J.J. Qu, Q.J. Han, Z.S. An, Sediment. Geol. 273, 91 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    N. Zhou, Sci. Geogr. Sin. 32, 1391 (2014)Google Scholar
  4. 4.
    I.J. Walker, Earth Surf. Process. Landf. 24, 437 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    A. Frank, K. Gary, Sedimentology 43, 451 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    I.J. Walker, W.G. Nickling, Prog. Phys. Geogr. 26, 47 (2002)CrossRefGoogle Scholar
  7. 7.
    H. Jiang et al., Geomorphology 283, 41 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    D.R. Parsons, G.F.S. Wiggs, I.J. Walker, R.I. Ferguson, B.G. Garvey, Environ. Model. Softw. 19, 153 (2004)CrossRefGoogle Scholar
  9. 9.
    D.R. Parsons, I.J. Walker, G.F.S. Wiggs, Geomorphology 59, 149 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Herrmann, J.S. Andrade jr., V. Schatz, G. Sauermann, E.J.R. Parteli, Physica A 357, 44 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S. Feng, N. Huang, Environ. Model. Softw. 25, 362 (2010)CrossRefGoogle Scholar
  12. 12.
    S.J. Wakes, T. Maegli, K.J. Dickinson, M.J. Hilton, Environ. Model. Softw. 25, 337 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Porcar, P. Caballero, J. Wind Eng. Ind. Aerodyn. 99, 879 (2011)CrossRefGoogle Scholar
  14. 14.
    A.D. Araujo, J.S. Andrade Jr., L.P. Maia, H.J. Herrmann, Sci. Rep. 3, 2858 (2013)CrossRefGoogle Scholar
  15. 15.
    M.C. Baddock, G.F.S. Wiggs, Earth Surf. Process. Landf. 36, 1435 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Palmer, R. Mejia-Alvarez, J.L. Best, K.T. Christensen, Exp. Fluids 52, 809 (2012)CrossRefGoogle Scholar
  17. 17.
    K. Lynch, D.W.T. Jackson, A. Cooper, Geomorphology 105, 139 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    K. Lynch, D.W.T. Jackson, A. Cooper, Earth Surf. Process. Landf. 35, 344 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    G. Sterk, A.F.G. Jacobs, J.H. Van Boxel, Earth Surf. Process. Landf. 23, 877 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    H. Schonfeldt, S. Von Lowis, Meteorol. Z. 12, 257 (2003)CrossRefGoogle Scholar
  21. 21.
    G. Wiggs, C. Weaver, Meteorol. Z. 39, 1 (2012)Google Scholar
  22. 22.
    S. Dupont et al., J. Geophys. Res.: Atmospheres 118, 7109 (2013)ADSGoogle Scholar
  23. 23.
    B. Launder, D. Spalding, Lectures in Mathematical Models of Turbulence (Academic Press, 1972)Google Scholar
  24. 24.
    R. Anderson, P. Haff, J. Chem. Inf. Model. 53, 21 (1991)Google Scholar
  25. 25.
    R. Anderson, Proc. R. Soc. Edinburgh 96B, 149 (1989)Google Scholar
  26. 26.
    B. Andreotti, J. Fluid Mech. 510, 47 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    D. Beladjine, M. Ammi, L. Oger, A. Valance, Phys. Rev. E 75, 061305 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    J.F. Kok, N.O. Renno, J. Geophys. Res.: Atmospheres 114, D17204 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M.A. Rice et al., Sedimentology. 42, 695 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    D. Tong, N. Huang, J. Geophys. Res.: Atmospheres 117, D16205 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Shao, M.R. Raupach, P.A. Findlater, J. Geophys. Res. 98, 12719 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    G.J. Brown, Appl. Math. Model. 26, 155 (2002)CrossRefGoogle Scholar
  33. 33.
    K. Lettau, H. Lettau, Exploring the Worlds Driest Climate (Center for Climatic Research, University of Wisconsin, Madison, 1978)Google Scholar
  34. 34.
    M. Almeida et al., Phys. Rev. Lett. 96, 018001 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    A.D. Araujo et al., Granular Matter 11, 193 (2009)CrossRefGoogle Scholar
  36. 36.
    A. Zhao et al., J. Desert Res. 59, 119 (2004)Google Scholar
  37. 37.
    J. Kok et al., Rep. Prog. Phys. 75, 106901 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    I. Lima et al., Sci. Rep. 7, 45148 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Shao, Physics and Modelling of Wind Erosion (Springer, 2000) p. 380Google Scholar
  40. 40.
    B. Li, D. Sherman, Aeolian Res. 17, 33 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    J. Cheng, G. Xin, L. Zhi, F. Jiang, Sci. Rep. 7, 41462 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Ministry for Education on Western Disaster and EnvironmentLanzhou UniversityLanzhouChina

Personalised recommendations