Time irreversibility in reversible shell models of turbulence

  • Massimo De Pietro
  • Luca Biferale
  • Guido Boffetta
  • Massimo CenciniEmail author
Regular Article
Part of the following topical collections:
  1. Fluids and Structures: Multi-scale coupling and modeling


Turbulent flows governed by the Navier-Stokes equations (NSE) generate an out-of-equilibrium time irreversible energy cascade from large to small scales. In the NSE, the energy transfer is due to the nonlinear terms that are formally symmetric under time reversal. As for the dissipative term: first, it explicitly breaks time reversibility; second, it produces a small-scale sink for the energy transfer that remains effective even in the limit of vanishing viscosity. As a result, it is not clear how to disentangle the time irreversibility originating from the non-equilibrium energy cascade from the explicit time-reversal symmetry breaking due to the viscous term. To this aim, in this paper we investigate the properties of the energy transfer in turbulent shell models by using a reversible viscous mechanism, avoiding any explicit breaking of the \(t \rightarrow -t\) symmetry. We probe time irreversibility by studying the statistics of Lagrangian power, which is found to be asymmetric under time reversal also in the time-reversible model. This suggests that the turbulent dynamics converges to a strange attractor where time reversibility is spontaneously broken and whose properties are robust for what concerns purely inertial degrees of freedoms, as verified by the anomalous scaling behavior of the velocity structure functions.

Graphical abstract


Topical issue: Fluids and Structures: Multi-scale coupling and modeling 


  1. 1.
    U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995)Google Scholar
  2. 2.
    C. De Lellis, L. Székelyhidi, Arch. Ration. Mech. Anal. 195, 225 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Rose, P. Sulem, J. Phys. (Paris) 39, 441 (1978)CrossRefGoogle Scholar
  4. 4.
    G. Falkovich, K.R. Sreenivasan, Phys. Today 59, 43 (2006) issue No. 4CrossRefGoogle Scholar
  5. 5.
    G. Gallavotti, Phys. Lett. A 223, 91 (1996)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Gallavotti, Physica D 105, 163 (1997)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Gallavotti, L. Rondoni, E. Segre, Physica D 187, 338 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Gallavotti, V. Lucarini, J. Stat. Phys. 156, 1027 (2014)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Sawford, P. Yeung, M. Borgas, Phys. Fluids 17, 095109 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    J. Jucha, H. Xu, A. Pumir, E. Bodenschatz, Phys. Rev. Lett. 113, 054501 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    L. Biferale, G. Boffetta, A. Celani, B. Devenish, A. Lanotte, F. Toschi, Phys. Fluids 17, 111701 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H. Xu, A. Pumir, G. Falkovich, E. Bodenschatz, M. Shats, H. Xia, N. Francois, G. Boffetta, Proc. Natl. Acad. Sci. U.S.A. 111, 7558 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    A. Pumir, H. Xu, G. Boffetta, G. Falkovich, E. Bodenschatz, Phys. Rev. X 4, 041006 (2014)Google Scholar
  14. 14.
    M. Cencini, L. Biferale, G. Boffetta, M. De Pietro, Phys. Rev. Fluids 2, 104604 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    T. Grafke, A. Frishman, G. Falkovich, Phys. Rev. E 91, 043022 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Piretto, S. Musacchio, F. De Lillo, G. Boffetta, Phys. Rev. E 94, 053116 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J. Wilson, B. Sawford, Bound.-Layer Meteorol. 78, 191 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    L. Biferale, Annu. Rev. Fluid Mech. 35, 441 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical Systems Approach to Turbulence (Cambridge University Press, 2005)Google Scholar
  20. 20.
    U. Frisch, G. Parisi, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by U.M. Ghil (North-Holland, 1985)Google Scholar
  21. 21.
    R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, J. Phys. A: Math. Gen. 17, 3521 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    Z.S. She, E. Jackson, Phys. Rev. Lett. 70, 1255 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    D. Carati, G. Winckelmans, H. Jeanmart, J. Fluid Mech. 441, 119 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    L. Fang, W. Bos, L. Shao, J.P. Bertoglio, J. Turbul. 13, N3 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    A. Vela-Martín, J. Jiménez, Reversibility in the 3D inertial turbulent cascade, extended abstract presented at the Conference ETC15, 15th European Turbulence Conference, Delft, The Netherlands, 25-28 August, 2015,
  26. 26.
    P. Ditlevsen, Turbulence and Shell Models (Cambridge University Press, 2010). Google Scholar
  27. 27.
    V. L'vov, E. Podivilov, A. Pomyalov, I. Procaccia, D. Vandembroucq, Phys. Rev. E 58, 1811 (1998)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    E. Gledzer, Dokl. Akad. Nauk SSSR 209, 1046 (1973)Google Scholar
  29. 29.
    K. Ohkitani, M. Yamada, Prog. Theor. Phys. 81, 329 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    M. Jensen, G. Paladin, A. Vulpiani, Phys. Rev. A 43, 798 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    L. Biferale, D. Pierotti, A. Vulpiani, J. Phys. A: Math. Gen. 31, 21 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    G. Boffetta, F. De Lillo, S. Musacchio, Phys. Rev. E 66, 066307 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    N. Mordant, P. Metz, O. Michel, J.F. Pinton, Phys. Rev. Lett. 87, 214501 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    L. Chevillard, S. Roux, E. Lévêque, N. Mordant, J.F. Pinton, A. Arnéodo, Phys. Rev. Lett. 91, 214502 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    L. Biferale, E. Bodenschatz, M. Cencini, A. Lanotte, N. Ouellette, F. Toschi, H. Xu, Phys. Fluids 20, 065103 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    A. Arnéodo et al., Phys. Rev. Lett. 100, 254504 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    G. Boffetta, A. Celani, D. Roagna, Phys. Rev. E 61, 3234 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    L. Biferale, M. Vergassola, Phys. Fluids 13, 2139 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    E. Ott, Y. Du, K. Sreenivasan, A. Juneja, A. Suri, Phys. Rev. Lett. 69, 2654 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    M. Buzzicotti, M. Linkmann, H. Aluie, L. Biferale, J. Brasseur, C. Meneveau, arXiv:1706.03219 (2017)Google Scholar
  41. 41.
    Z.S. She, E. Leveque, Phys. Rev. Lett. 72, 336 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    M. Borgas, Philos. Trans. 342, 379 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    L. Biferale, G. Boffetta, A. Celani, B. Devenish, A. Lanotte, F. Toschi, Phys. Rev. Lett. 93, 064502 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    L. Chevillard, S. Roux, E. Lévêque, N. Mordant, J.F. Pinton, A. Arnéodo, Phys. Rev. Lett. 91, 214502 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    L. Chevillard, B. Castaing, A. Arneodo, E. Lévêque, J.F. Pinton, S. Roux, C.R. Phys. (Paris) 13, 899 (2012)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Massimo De Pietro
    • 1
    • 4
  • Luca Biferale
    • 1
    • 4
  • Guido Boffetta
    • 2
  • Massimo Cencini
    • 3
    • 4
    Email author
  1. 1.Dipartimento di FisicaUniversità di Roma Tor VergataRomaItaly
  2. 2.Dipartimento di Fisica and INFNUniversità di TorinoTorinoItaly
  3. 3.Istituto dei Sistemi ComplessiCNRRomeItaly
  4. 4.INFN, Sezione di Roma Tor VergataRomaItaly

Personalised recommendations