Advertisement

Flagellated microswimmers: Hydrodynamics in thin liquid films

  • Daniela Pimponi
  • Mauro Chinappi
  • Paolo Gualtieri
Regular Article
Part of the following topical collections:
  1. Fluids and Structures: Multi-scale coupling and modeling

Abstract.

The hydrodynamics of a flagellated microswimmer moving in thin films is discussed. The fully resolved hydrodynamics is exploited by solving the Stokes equations for the actual geometry of the swimmer. Two different interfaces are used to confine the swimmer: a bottom solid wall and a top air-liquid interface, as appropriate for a thin film. The swimmer follows curved clockwise trajectories that can converge towards an asymptotically stable circular path or can result in a collision with one of the two interfaces. A bias towards the air-liquid interface emerges. Slight changes in the swimmer geometry and film thickness strongly affect the resulting dynamics suggesting that a very reach phenomenology occurs in the presence of confinement. Under specific conditions, the swimmer follows a “crown-like” path. Implications for the motion of bacteria close to an air bubble moving in a microchannel are discussed.

Graphical abstract

Keywords

Topical issue: Fluids and Structures: Multi-scale coupling and modeling 

References

  1. 1.
    Alessandra Livraghi, Scott H. Randell, Toxicol. Pathol. 35, 116 (2007)CrossRefGoogle Scholar
  2. 2.
    James M. Beck, Vincent B. Young, Gary B. Huffnagle, Trans. Res. 160, 258 (2012)CrossRefGoogle Scholar
  3. 3.
    Henry Shum, Eamonn A. Gaffney, Phys. Rev. E 91, 033012 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Lailai Zhu, Eric Lauga, Luca Brandt, J. Fluid Mech. 726, 285 (2013)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ruth A. Lambert, Francesco Picano, Wim-Paul Breugem, Luca Brandt, J. Fluid Mech. 733, 528 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    A.J.T.M. Mathijssen, A. Doostmohammadi, J.M. Yeomans, T.N. Shendruk, J. Fluid Mech. 806, 35 (2016)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Diego Lopez, Eric Lauga, Phys. Fluids 26, 071902 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Mario Theers, Elmar Westphal, Gerhard Gompper, Roland G. Winkler, Soft Matter 12, 7372 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Jinglei Hu, Adam Wysocki, Roland G. Winkler, Gerhard Gompper, Sci. Rep. 5, 9586 (2015)CrossRefGoogle Scholar
  10. 10.
    Paolo Malgaretti, Holger Stark, J. Chem. Phys. 146, 174901 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Hugo Wioland, Enkeleida Lushi, Raymond E. Goldstein, New J. Phys. 18, 075002 (2016)CrossRefGoogle Scholar
  12. 12.
    Jens Elgeti, Roland G. Winkler, Gerhard Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Yizhar Or, Richard M. Murray, Phys. Rev. E 79, 045302 (2009)ADSGoogle Scholar
  14. 14.
    Liana Vaccari, Mehdi Molaei, Tagbo H.R. Niepa, Daeyeon Lee, Robert L. Leheny, Kathleen J. Stebe, Adv. Colloid Interface Sci. 247, 561 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Ramia, D.L. Tullock, N. Phan-Thien, Biophys. J. 65, 755 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Howard C. Berg, E. coli in Motion (Springer Science & Business Media, 2004)Google Scholar
  17. 17.
    Xiaobing Chen, Howard C. Berg, Biophys. J. 78, 1036 (2000)CrossRefGoogle Scholar
  18. 18.
    Eric Lauga, Willow R. DiLuzio, George M. Whitesides, Howard A. Stone, Biophys. J. 90, 400 (2006)CrossRefGoogle Scholar
  19. 19.
    Silvio Bianchi, Filippo Saglimbeni, Roberto Di Leonardo, Phys. Rev. X 7, 011010 (2017)Google Scholar
  20. 20.
    R. Di Leonardo, D. Dell Arciprete, L. Angelani, V. Iebba, Phys. Rev. Lett. 106, 038101 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Laurence Lemelle, Jean-François Palierne, Elodie Chatre, Christophe Place, J. Bacteriol. 192, 6307 (2010)CrossRefGoogle Scholar
  22. 22.
    Giorgia Sinibaldi, Valerio Iebba, Mauro Chinappi, MicrobiologyOpen, e532 (2017),  https://doi.org/10.1002/mbo3.532
  23. 23.
    D. Pimponi, M. Chinappi, P. Gualtieri, C.M. Casciola, J. Fluid Mech. 789, 514 (2016)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Paul D. Frymier, Roseanne M. Ford, Howard C. Berg, Peter T. Cummings, Proc. Natl. Acad. Sci. U.S.A. 92, 6195 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    H. Shum, E.A. Gaffney, D.J. Smith, Proc. R. Soc. London A 466, 1725 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Giorgia Guccione, Daniela Pimponi, Paolo Gualtieri, Mauro Chinappi, Phys. Rev. E 96, 042603 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Rodrigo Ledesma-Aguilar, Julia M. Yeomans, Phys. Rev. Lett. 111, 138101 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Nicholas C. Darnton, Howard C. Berg, Biophys. J. 92, 2230 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Martin Z. Bazant, Olga I. Vinogradova, J. Fluid Mech. 613, 125 (2008)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Marcello Sega, Mauro Sbragaglia, Luca Biferale, Sauro Succi, Soft Matter 9, 8526 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Matteo Amabili, Alberto Giacomello, Simone Meloni, Carlo Massimo Casciola, Adv. Mater. Interfaces 2, 1500248 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, F. Toschi, Phys. Rev. Lett. 97, 204503 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    D. Gentili, G. Bolognesi, A. Giacomello, M. Chinappi, C.M. Casciola, Microfluid. Nanofluid. 16, 1009 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Bolognesi, C. Cottin-Bizonne, E.M. Guene, Jérémie Teisseire, C. Pirat, Soft Matter 9, 2239 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    D. Pimponi, M. Chinappi, P. Gualtieri, C.M. Casciola, Microfluid. Nanofluid. 16, 571 (2014)CrossRefGoogle Scholar
  36. 36.
    Tatiana V. Nizkaya, Evgeny S. Asmolov, Jiajia Zhou, Friederike Schmid, Olga I. Vinogradova, Phys. Rev. E 91, 033020 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Michael Morse, Athena Huang, Guanglai Li, Martin R. Maxey, Jay X. Tang, Biophys. J. 105, 21 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Constantine Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, 1992)Google Scholar
  39. 39.
    John Happel, Howard Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Vol. 1 (Springer Science & Business Media, 2012)Google Scholar
  40. 40.
    Girish Sharma, Abhishek Agarwala, Baidurya Bhattacharya, Comput. Struct. 128, 31 (2013)CrossRefGoogle Scholar
  41. 41.
    Cristina Gómez-Suárez, Henk J. Busscher, Henny C. van der Mei, Appl. Environ. Microbiol. 67, 2531 (2001)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniela Pimponi
    • 1
  • Mauro Chinappi
    • 2
  • Paolo Gualtieri
    • 1
  1. 1.Dipartimento di Ingegneria Meccanica e AerospazialeSapienza Università di RomaRomaItaly
  2. 2.Dipartimento di Ingegneria IndustrialeUniversità di Roma Tor VergataRomaItaly

Personalised recommendations