Advertisement

Nonlinear mechanical behaviors of a nanoparticle monolayer at the air-water interface

  • Yongjian Zhang
  • Jiaqi Si
  • Qirui Cui
  • Gengtao Wang
  • Yujie Bai
Regular Article
  • 73 Downloads

Abstract.

Nanoparticle can adsorb at the air-water interface and gives rise to the special interfacial mechanical properties. With the influence of external stimulus, the adsorption state of the particles may be changed and in turn the mechanical properties of the particle layer. In this work, we study the mechanical properties of a monolayer of silica nanoparticles deposited in the Langmuir trough. The area of the monolayer was varied sinusoidally by two oscillating barriers and the surface pressure was monitored by two orthogonal Wilhelmy plates. It has been found that the surface pressure of the particle layer exhibits a significant anisotropic effect. At the early stage of the oscillation, the surface pressure versus time is sinusoidal. However, with the increase of the oscillation time, the response of the particle layer significantly deviates the sinusoidal function, which implies that the response becomes nonlinear caused by a long-term oscillation. The fast Fourier Transformation (FFT) of the surface pressure data shows that the non-sinusoidal response is composed of several fundamental frequency responses. We eventually obtained the time variation of the compression modulus E and shear modulus G . A possible mechanism was proposed to account for the mechanical properties change and the nonlinear behavior of the particle monolayer.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    B.P. Binks, Curr. Opin. Colloid Interface Sci. 7, 21 (2002)CrossRefGoogle Scholar
  2. 2.
    K. Stratford, R. Adhikari, I. Pagonabarraga, J.C. Desplat, M.E. Cates, Science 309, 2198 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    B. Hu, Y. Wu, Nat. Mater. 6, 985 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Mendoza, E. Guzmán, F. Martínez-Pedrero, H. Ritacco, R.G. Rubio, F. Ortega, V.M. Starov, R. Miller, Adv. Colloid Interface Sci. 206, 303 (2014)CrossRefGoogle Scholar
  5. 5.
    D.Y. Zang, Y.J. Zhang, D. Langevin, Acta Phys. Sin. 60, 076801 (2011)Google Scholar
  6. 6.
    R.V. Hooghten, V.E. Blair, A. Vananroye, A.B. Schofield, J. Vermant, J.H.J. Thijssen, Langmuir 33, 4107 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Stocco, W. Drenckhan, E. Rio, D. Langevin, B.P. Binks, Soft Matter 5, 2215 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    E.M. Herzig, K.A. White, A.B. Schofield et al., Nat. Mater. 6, 966 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    H. Hilles, A. Maestro, F. Monroy, F. Ortega, R.G. Rubio, M.G. Velarde, J. Chem. Phys. 126, 124904 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J. Pelipenko, J. Kristl, R. Rosic, S. Baumgartner, P. Kocbek, Acta Pharm. 62, 123 (2012)CrossRefGoogle Scholar
  11. 11.
    P.F. Philipp Erni, Erich J. Windhab Victor Kusnezov, Heiko Stettin, Jörg Läuger, Rev. Sci. Instrum. 74, 4916 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    D.Y. Zang, Z. Chen, X.G. Geng, Appl. Phys. Lett. 108, 031603 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    D.Y. Zang, Y.K. Yu, Z. Chen, X.G. Li, H.J. Wu, X.G. Geng, Adv. Colloid Interface Sci. 243, 77 (2017)CrossRefGoogle Scholar
  14. 14.
    Jordan T. Petkov, Theodor D. Gurkov, Bruce E. Campbell, Rajendra P. Borwankar, Langmuir 16, 3703 (2000)CrossRefGoogle Scholar
  15. 15.
    T.A.M. Ferenczi, P. Cicuta, J. Phys. 17, S3445 (2005)Google Scholar
  16. 16.
    D.Y. Zang, E. Rio, G. Delon, D. Langevin, B. Wei, B.P. Binks, Mol. Phys. 109, 1057 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009)CrossRefGoogle Scholar
  18. 18.
    D.Y. Zang, A. Stocco, D. Langevin, B. Wei, B.P. Binks, Phys. Chem. Chem. Phys. 11, 9522 (2009)CrossRefGoogle Scholar
  19. 19.
    D.Y. Zang, E. Rio, D. Langevin, B. Wei, B.P. Binks, Eur. Phys. J. E 31, 125 (2010)CrossRefGoogle Scholar
  20. 20.
    A.B. Subramaniam, M. Abkarian, H.A. Stone, Nat. Mater. 4, 553 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    X. Li, Y. Xue, P. Lv, H. Lin, F. Du, Y. Hu, J. Shen, H. Duan, Soft Matter 12, 1655 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    D. Frydel, S. Dietrich, M. Oettel, Phys. Rev. Lett. 99, 118302 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    S. Schmidt, T. Hellweg, R. von Klitzing, Langmuir 24, 12595 (2008)CrossRefGoogle Scholar
  24. 24.
    G. Boniello, C. Blanc, D. Fedorenko, M. Medfai, N.B. Mbarek, M. In, M. Gross, A. Stocco, M. Nobili, Nat. Mater. 14, 908 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    P. Cicuta, E.M. Terentjev, Eur. Phys. J. E 16, 147 (2005)CrossRefGoogle Scholar
  26. 26.
    D.Y. Zang, Y.J. Zhang, Q.W. Hou, Colloids Surf. A 395, 262 (2012)CrossRefGoogle Scholar
  27. 27.
    F. M. Hani Hilles, Laura J. Bonales, Francisco Ortega, Ramón G. Rubio, Adv. Colloid Interface Sci. 122, 67 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yongjian Zhang
    • 1
  • Jiaqi Si
    • 2
  • Qirui Cui
    • 3
  • Gengtao Wang
    • 2
  • Yujie Bai
    • 1
  1. 1.Shaanxi Key Laboratory of Surface Engineering and RemanufacturingXi’an UniversityXi’anChina
  2. 2.Honors CollegeNorthwestern Polytechnical UniversityXi’anChina
  3. 3.MOE Key LaboratoryNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations