Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces

Regular Article


Microstructured surfaces with continuous solid topography have many potential applications in biology and industry. To understand the liquid transport property of microstructured surfaces with continuous solid topography, we studied the sliding behavior of a droplet on microhole-structured surfaces. We found that the sliding friction of the droplet increased with increasing solid area fraction due to enlarged apparent contact area and enhanced contact angle hysteresis. By introducing a correction factor to the modified Cassie-Baxter relation, we proposed an improved theoretical model to better predict the apparent receding contact angle. Our experimental data also revealed that the geometric topology of surface microstructures could affect the sliding friction with microhole-decorated surfaces, exhibiting a larger resistance than that for micropillar-decorated surfaces. Assisted by optical microscopy, we attributed this topology effect to the continuity and the true total length of the three-phase contact line at the receding edge during the sliding. Our study provides new insights into the liquid sliding behavior on microstructured surfaces with different topologies, which may help better design functional surfaces with special liquid transport properties.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 

Supplementary material

10189_2018_11631_MOESM1_ESM.pdf (370 kb)
Supplementary material


  1. 1.
    K. Koch, B. Bhushan, W. Barthlott, Prog. Mater. Sci. 54, 137 (2009)CrossRefGoogle Scholar
  2. 2.
    N.J. Shirtcliffe, G. McHale, M.I. Newton, G. Chabrol, C.C. Perry, Adv. Mater. 16, 1929 (2004)CrossRefGoogle Scholar
  3. 3.
    E. Celia, T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard, J. Colloid Interface Sci. 402, 1 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    H.Y. Guo, Q. Li, H.-P. Zhao, K. Zhou, X.Q. Feng, RSC Adv. 5, 66901 (2015)CrossRefGoogle Scholar
  5. 5.
    K. Lin, D. Zang, X. Geng, Z. Chen, Eur. Phys. J. E 39, 15 (2016)CrossRefGoogle Scholar
  6. 6.
    J.L. Liu, X.Q. Feng, G. Wang, S.-W. Yu, J. Phys.: Condes. Matter 19, 356002 (2007)Google Scholar
  7. 7.
    R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Langmuir 21, 956 (2005)CrossRefGoogle Scholar
  8. 8.
    C. Neinhuis, W. Barthlott, Ann. Bot. 79, 667 (1997)CrossRefGoogle Scholar
  9. 9.
    K. Liu, L. Jiang, Annu. Rev. Mater. Res. 42, 231 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    B. Bhushan, Y.C. Jung, Prog. Mater. Sci. 56, 1 (2011)CrossRefGoogle Scholar
  11. 11.
    G.D. Bixler, B. Bhushan, Nanoscale 6, 76 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    G.D. Bixler, B. Bhushan, Nanoscale 5, 7685 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    G.D. Bixler, B. Bhushan, Crit. Rev. Solid State 40, 1 (2015)CrossRefGoogle Scholar
  14. 14.
    M.G. Simon, A.P. Lee, Microdroplet Technology (Springer, New York, 2012) DOI: 10.1007/978-1-4614-3265-4_2Google Scholar
  15. 15.
    O.I. Vinogradova, A.L. Dubov, Mendeleev Commun. 22, 229 (2012)CrossRefGoogle Scholar
  16. 16.
    S.Y. Xing, R.S. Harake, T.R. Pan, Lab Chip 11, 3642 (2011)CrossRefGoogle Scholar
  17. 17.
    F. Mumm, A.T.J. van Helvoort, P. Sikorski, ACS Nano 3, 2647 (2009)CrossRefGoogle Scholar
  18. 18.
    P. Hao, C. Lv, Z. Yao, F. He, EPL 90, 66003 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    C. Lv, C. Yang, P. Hao, F. He, Q. Zheng, Langmuir 26, 8704 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Qiao, S. Li, Q. Li, B. Li, K. Liu, X.Q. Feng, Langmuir 33, 13480 (2017)CrossRefGoogle Scholar
  21. 21.
    N. Anantharaju, M.V. Panchagnula, S. Vedantam, S. Neti, S. Tatic-Lucic, Langmuir 23, 11673 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Suzuki, K. Ueno, Langmuir 33, 138 (2017)CrossRefGoogle Scholar
  23. 23.
    D.M. Spori, T. Drobek, S. Zurcher, N.D. Spencer, Langmuir 26, 9465 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Liu, Z. Wang, Sci. Rep. 6, 33817 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Li, X. Ma, D. Zang, B. Shang, X. Qiang, Q. Hong, X. Guan, RSC Adv. 4, 49655 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Li, X. Ma, D. Zang, Q. Hong, X. Guan, RSC Adv. 5, 21084 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Zhao, M. Zhang, Z. Wang, Adv. Mater. Interfaces 3, 1500664 (2016)CrossRefGoogle Scholar
  28. 28.
    C.W. Extrand, Y. Kumagai, J. Colloid Interface Sci. 170, 515 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    C.W. Extrand, A.N. Gent, J. Colloid Interface Sci. 138, 431 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    W. Choi, A. Tuteja, J.M. Mabry, R.E. Cohen, G.H. McKinley, J. Colloid Interface Sci. 339, 208 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    C. Priest, T.W. Albrecht, R. Sedev, J. Ralston, Langmuir 25, 5655 (2009)CrossRefGoogle Scholar
  32. 32.
    S.F. Chini, V. Bertola, A. Amirfazli, Colloids Surf. A 436, 425 (2013)CrossRefGoogle Scholar
  33. 33.
    A.I. ElSherbini, A.M. Jacobi, J. Colloid Interface Sci. 299, 841 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    R.A. Brown, F.M. Orr jr., L.E. Scriven, J. Colloid Interface Sci. 73, 76 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    A. Carre, M.E.R. Shanahan, J. Adhes. 49, 177 (2006)CrossRefGoogle Scholar
  36. 36.
    D. Öner, T.J. McCarthy, Langmuir 16, 7777 (2000)CrossRefGoogle Scholar
  37. 37.
    Z.Q. Wang, E. Chen, Y.P. Zhao, Sci. China Technol. Sci. 61, 309 (2018)CrossRefGoogle Scholar
  38. 38.
    E. Chen, Q. Yuan, X. Huang, Y.P. Zhao, J. Adhes. Sci. Technol. 30, 2265 (2016)CrossRefGoogle Scholar
  39. 39.
    X.Q. Feng, Y.P. Cao, B. Li, Surface Wrinkling Mechanics of Soft Materials (China Science Press, Beijing, 2017)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.AML, CNMM and Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of TribologyTsinghua UniversityBeijingChina

Personalised recommendations