Advertisement

The effect of pH on the dynamics of natural membranes

  • M. Guiral
  • C. Neitzel
  • M. Salvador Castell
  • N. Martinez
  • M. T. Giudici-Orticoni
  • J. Peters
Regular Article

Abstract.

Pure phospholipids and membrane fragments from bacterial cells living under various conditions were studied against the influence of the surrounding acidity on the internal dynamics. For that we compared mean square displacements extracted from elastic incoherent neutron scattering data, measured both at low and at neutral pH, of the phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine and of samples from neutralophilic and acidophilic micro-organisms (some being hyperthermophilic and others mesophilic). The lipids showed a slight shift in the phase transition temperature of about 4 degrees under pH variation and became slightly more mobile at lower pH. The membrane fragments not used to extreme acidic conditions were significantly more sensitive to variations in the pH values, whereas the acidophilic and -tolerant samples were much less influenced by this parameter. They presented the higher softness at low pH, which was closer to their native condition. Such findings might be a hint for adaptation mechanisms to different acidity conditions.

Graphical abstract

Keywords

Living systems: Structure and Function 

References

  1. 1.
    G.L. Nicolson, Biochim. Biophys. Acta 1838, 1451 (2014)CrossRefGoogle Scholar
  2. 2.
    V.H. Teixeira, D. Vila-Vicosa, A.M. Baptista, M. Machuqueiro, J. Chem. Theory Comput. 10, 2176 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Lund, A. Tramonti, D. De Biase, FEMS Microbiol. Rev. 38, 1091 (2014)CrossRefGoogle Scholar
  4. 4.
    J.B. Russell, D.B. Dombrowski, Appl. Environ. Microbiol. 39, 604 (1980)Google Scholar
  5. 5.
    H.A. Santos, D. Vila-Vicosa, V.H. Teixeira, A.M. Baptista, M. Machuqueiro, J. Chem. Theory Comput. 11, 5973 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Small, D. Blankenhorn, D. Welty, E. Zinser, J.L. Slonczewski, J. Bacteriol. 176, 1729 (1994)CrossRefGoogle Scholar
  7. 7.
    L.M. Maurer, E. Yohannes, S.S. Bondurant, M. Radmacher, J.L. Slonczewski, J. Bacteriol. 187, 304 (2005)CrossRefGoogle Scholar
  8. 8.
    G. Meruane, T. Vargas, Hydrometallurgy 71, 149 (2003)CrossRefGoogle Scholar
  9. 9.
    J. Peters, M.T. Giudici-Orticoni, G. Zaccai, M. Guiral, Eur. Phys. J. E 36, 78 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Huber, W. Eder, The Prokaryotes: Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria (Springer Science & Business Media, 2006)Google Scholar
  11. 11.
    G.M. Garrity, J.A. Bell, T. Lilburn, Bergey's Manual${}^{\circledR}$ of Systematic Bacteriology, Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria (Springer Science & Business Media, 2005)Google Scholar
  12. 12.
    R.L. Buchanan, L.A. Klawitter, Food Microbiol. 9, 185 (1992)CrossRefGoogle Scholar
  13. 13.
    M.J. Wolin, E.A. Wolin, N.J. Jacobs, J. Bacteriol. 81, 911 (1961)Google Scholar
  14. 14.
    M. Guiral, C. Aubert, M.T. Giudici-Orticoni, Biochem. Soc. Trans. 33, 22 (2005)CrossRefGoogle Scholar
  15. 15.
    L. Prunetti, P. Infossi, M. Brugna, C. Ebel, M.T. Giudici-Orticoni, M. Guiral, J. Biol. Chem. 285, 41815 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Lorenzen, S. Steinwachs, G. Unden, Arch. Microbiol. 162, 277 (1994)CrossRefGoogle Scholar
  17. 17.
    M. Guiral, P. Tron, C. Aubert, A. Gloter, C. Iobbi-Nivol, M.T. Giudici-Orticoni, J. Biol. Chem. 280, 42004 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Yarzabal, C. Appia-Ayme, J. Ratouchniak, V. Bonnefoy, Microbiology 150, 2113 (2004)CrossRefGoogle Scholar
  19. 19.
    S. Busch, C. Smuda, L.C. Pardo, T. Unruh, J. Am. Chem. Soc. 132, 3232 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Aoun, E. Pellegrini, M. Trapp, F. Natali, L. Cantu, P. Brocca, Y. Gerelli, B. Deme, M.M. Koza, M. Johnson, J. Peters, Eur. Phys. J. E 39, 48 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Perticaroli, G. Ehlers, C.B. Stanley, E. Mamontov, H. O'Neill, Q. Zhang, X. Cheng, D.A. Myles, J. Katsaras, J.D. Nickels, J. Am. Chem. Soc. 139, 1098 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Krezel, W. Bal, J. Inorg. Biochem. 98, 161 (2004)CrossRefGoogle Scholar
  23. 23.
    F. Natali, J. Peters, D. Russo, S. Barbieri, C. Chiapponi, A. Cupane, A. Deriu, M.T. Di Bari, E. Farhi, Y. Gerelli, P. Mariani, A. Paciaroni, C. Rivasseau, G. Schirò, F. Sonvico, Neutron News 19, 14 (2008)Google Scholar
  24. 24.
    V.F. Sears, Neutron News 3, 26 (1992)CrossRefGoogle Scholar
  25. 25.
    H.H. Paalman, C.J. Pings, J. Appl. Phys. 33, 2635 (1962)ADSCrossRefGoogle Scholar
  26. 26.
    D. Richard, M. Ferrand, G.J. Kearley, J. Neutron Res. 4, 33 (1996)CrossRefGoogle Scholar
  27. 27.
    A. Rahman, K.S. Singwi, A. Sjölander, Phys. Rev. 126, 986 (1962)ADSCrossRefGoogle Scholar
  28. 28.
    V. Réat, G. Zaccai, C. Ferrand, C. Pfister, presented at the Biological Macromolecular Dynamics, Proceedings of a Workshop on Inelastic and Quasielastic Neutron Scattering in Biology, 1997 (unpublished)Google Scholar
  29. 29.
    G. Zaccai, Science 288, 1604 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    J. Peters, N. Martinez, M. Trovaslet, K. Scannapieco, M.M. Koza, P. Masson, F. Nachon, Phys. Chem. Chem. Phys. 18, 12992 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Caffrey, J. Hogan, Chem. Phys. Lipids 61, 1 (1992)CrossRefGoogle Scholar
  32. 32.
    M. Trapp, J. Marion, M. Tehei, B. Deme, T. Gutberlet, J. Peters, Phys. Chem. Chem. Phys. 15, 20951 (2013)CrossRefGoogle Scholar
  33. 33.
    W. Hu, P.R. Haddad, K. Hasebe, M. Mori, K. Tanaka, M. Ohno, N. Kamo, Biophys. J. 83, 3351 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    M. Vihinen, Protein Eng. 1, 477 (1987)CrossRefGoogle Scholar
  35. 35.
    R. Jaenicke, J. Biotechnol. 79, 193 (2000)CrossRefGoogle Scholar
  36. 36.
    S. Kitagawa, N. Yokochi, N. Murooka, Int. J. Pharm. 126, 49 (1995)CrossRefGoogle Scholar
  37. 37.
    T. Oka, M. Hasan, M.Z. Islam, M. Moniruzzaman, M. Yamazaki, Langmuir 33, 12487 (2017)CrossRefGoogle Scholar
  38. 38.
    C. Sohlenkamp, O. Geiger, FEMS Microbiol. Rev. 40, 133 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Chi, L. Valenzuela, S. Beard, A.J. Mackey, J. Shabanowitz, D.F. Hunt, C.A. Jerez, Mol. Cell Proteomics 6, 2239 (2007)CrossRefGoogle Scholar
  40. 40.
    G. Antranikian, in Protein Adaptation in Extremophiles, edited by K.S. Siddiqui, T. Thomas (Nova Science Publishers, New York, 2008) p. 143Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Guiral
    • 1
  • C. Neitzel
    • 2
    • 3
  • M. Salvador Castell
    • 2
    • 3
  • N. Martinez
    • 2
    • 3
  • M. T. Giudici-Orticoni
    • 1
  • J. Peters
    • 2
    • 3
  1. 1.Aix Marseille Univ, CNRS, BIPMarseilleFrance
  2. 2.Univ. Grenoble Alpes, CNRS, LiPhyGrenobleFrance
  3. 3.Institut Laue LangevinGrenobleFrance

Personalised recommendations