Simulations of microscopic propulsion of soft elastic bodies

  • David Urbanik
  • Shikhar Mani Dwivedi
  • Colin Denniston
Regular Article


Using simulations that realistically model both hydrodynamic and elastic behavior, we study the motion of a microscopic, driven elastic sphere immersed in water. We first confirm the “jittery” relaxation recently predicted theoretically for an externally driven elastic sphere. The sphere is then divided in two and each section is driven internally with the two sections 180° out of phase. With periodic and perfectly symmetric driving, the elastic sphere spontaneously breaks symmetry and can attain macroscopic average swimming velocities to the right or left, the direction depending only on the initial state. With asymmetric driving the elastic sphere swims in one direction and the maximum speed is obtained with a 1/3:2/3 split. At high drive frequencies close to elastic resonances of the sphere, the motion can be quite efficient. At low drive frequencies the propulsion speed becomes independent of the elastic constants of the sphere and less efficient, but still substantial. Inertia is found to be an important driver of the behavior despite the small size of the spheres. As we model the full three-dimensional elasticity and compressible hydrodynamics, our simulations give not just qualitative indications but quantitative predictions for the motion.

Graphical abstract


Soft Matter: Colloids and Nanoparticles 

Supplementary material

10189_2018_11629_MOESM1_ESM.gif (1.8 mb)
Supplementary material
10189_2018_11629_MOESM2_ESM.gif (1.6 mb)
Supplementary material


  1. 1.
    M. Habibi, C. Denniston, M. Karttunen, EPL 108, 28005 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    J.L. McWhirter, H. Noguchi, G. Gompper, Soft Matter 7, 10967 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    H. Noguchi, G. Gompper, Phys. Rev. Lett. 98, 128103 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    S.T.T. Ollila, C. Denniston, T. Ala-Nissila, Phys. Rev. E 87, 050302 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    B.P. Ho, L.G. Leal, J. Fluid Mech. 65, 365 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    D. Di Carlo, Lab Chip 9, 3038 (2009)CrossRefGoogle Scholar
  7. 7.
    A.J. Mach, J.H. Kim, A. Arshi, S.C. Hur, D. Di Carlo, Lab Chip 11, 2827 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Masaeli, E. Sollier, H. Amini, W. Mao, K. Camacho, N. Doshi, S. Mitragotri, A. Alexeev, D. Di Carlo, Phys. Rev. X 2, 031017 (2012)Google Scholar
  9. 9.
    G. Segr, A. Silberberg, Nature 189, 209 (1961)ADSCrossRefGoogle Scholar
  10. 10.
    B.J. Alder, T.E. Wainwright, Phys. Rev. A 1, 18 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    R. Zwanzig, M. Bixon, Phys. Rev. A 2, 2005 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    E. Hauge, A. Martin-Löf, J. Stat. Phys. 7, 259 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    R. Dreyfus, J. Baudry, M. Roper, M. Fermigier, H. Stone, J. Bibette, Nature 437, 862 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    T. Qiu, T.-C. Lee, A. Mark, K. Mrozov, R. Mnster, O. Mierka, S. Turek, A. Leshansky, P. Fischer, Nat. Commun. 5, 5119 (2014)CrossRefGoogle Scholar
  15. 15.
    E. Lauga, Soft Matter 7, 3060 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    E. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    V. García-López, P.-T. Chiang, F. Chen, G. Ruan, A.A. Martí, A.B. Kolomeisky, G. Wang, J.M. Tour, Nano Lett. 15, 8229 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    A. Lindner, M. Shelley, Elastic fibers in flows, in Fluid-Structure Interactions in Low-Reynolds-Number Flows (The Royal Society of Chemistry, 2016) pp. 168--192Google Scholar
  19. 19.
    E.D. Tytell, C.-Y. Hsu, T.L. Williams, A.H. Cohen, L.J. Fauci, Proc. Natl. Acad. Sci. U.S.A. 107, 19832 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    E.D. Tytell, M.C. Leftwich, C.-Y. Hsu, B.E. Griffith, A.H. Cohen, A.J. Smits, C. Hamlet, L.J. Fauci, Phys. Rev. Fluids 1, 073202 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    B.U. Felderhof, Phys. Rev. 89, 033001 (2014)ADSGoogle Scholar
  22. 22.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    F. Mackay, S.T.T. Ollila, C. Denniston, Comput. Phys. Commun. 184, 2021 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    F. Mackay, C. Denniston, J. Comput. Phys. 237, 289 (2013)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S.T.T. Ollila, C.J. Smith, T. Ala-Nissila, C. Denniston, Multiscale Model. Simul. 11, 213 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    N. Aschcroft, N. Mermin, Solid State Physics (Saunders College, 1976)Google Scholar
  27. 27.
    A.M. Colinsworth, S. Zhang, W.E. Kraus, G.A. Truskey, Am. J. Cell Physiol. 283, C1219 (2002)CrossRefGoogle Scholar
  28. 28.
    W.-C. Yeh, P.-C. Li, Y.-M. Jeng, H.-C. Hsu, P.-L. Kuo, M.-L. Li, P.-M. Yang, P.H. Lee, Ultrasound Med. Biol. 28, 467 (2002)CrossRefGoogle Scholar
  29. 29.
    M. Loferer-Krößbacher, J. Klima, R. Psenner, Appl. Environ. Microbiol. 64, 688 (1998)Google Scholar
  30. 30.
    S.T.T. Ollila, C. Denniston, M. Karttunen, T. Ala-Nissila, Phys. Rev. Lett. 112, 118301 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    F.E. Mackay, K. Pastor, M. Karttunen, C. Denniston, Soft Matter 10, 8724 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    M.M.T. Alcanzare, V. Thakore, S.T.T. Ollila, M. Karttunen, T. Ala-Nissila, Soft Matter 13, 2148 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    A. Antipova, C. Denniston, Soft Matter 12, 1279 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    A. Antipova, C. Denniston, Phys. Rev. E 94, 052704 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    L.D. Landau, E. Lifshitz, Theory of Elasticity (Pergamon Press, 1959)Google Scholar
  36. 36.
    V. Galstyan, O.S. Pak, H.A. Stone, Phys. Fluids 27, 032001 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Landau, Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1960)Google Scholar
  38. 38.
    S.E. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    K. Machin, J. Exp. Biol. 35, 796 (1958)Google Scholar
  40. 40.
    C.H. Wiggins, R.E. Goldstein, Phys. Rev. Lett. 80, 3879 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    T.S. Yu, E. Lauga, A.E. Hosoi, Phys. Fluids 18, 091701 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    R. Ledesma-Aguilar, H. Löwen, J.M. Yeomans, Eur. Phys. J. E 35, 70 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • David Urbanik
    • 1
  • Shikhar Mani Dwivedi
    • 2
  • Colin Denniston
    • 2
    • 3
  1. 1.Cheriton School of Computer ScienceThe University of WaterlooWaterlooCanada
  2. 2.Department of Applied MathematicsThe University of Western OntarioLondonCanada
  3. 3.Department of Physics and AstronomyThe University of Western OntarioLondonCanada

Personalised recommendations