Stability of a stationary plane-parallel flow of a ternary fluid between two vertical plates maintained at constant different temperatures

  • T. Lyubimova
  • N. Lobov
  • V. Shevtsova
Regular Article
Part of the following topical collections:
  1. Non-equilibrium processes in multicomponent and multiphase media


The linear stability of a steady convective flow of a ternary mixture placed between differently heated vertical rigid plates is studied. The applied temperature gradient induces concentration gradients due to the Soret effect. The analysis is done for the case when separation ratios of ternary mixture, i.e., Soret coefficients, have different signs but the net separation ratio is negative. The stability maps in terms of the Grashof number and net separation ratio are obtained and discussed for monotonic and oscillatory modes of instability. The previous results for long-wave instability of a binary mixture were recovered in the limit when one of the Soret coefficients tends to zero. For finite-wavelength perturbations the previous results were extended by discovering the oscillatory instability.

Graphical abstract


Topical issue: Non-equilibrium processes in multicomponent and multiphase media 


  1. 1.
    D.T.J. Hurle, E. Jakeman, J. Fluid Mech. 47, 667 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    E. Knobloch, D.R. Moore, Phys. Rev. A. 37, 860 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    G.Z. Gershuni, E.M. Zhukhovitsky, A.A. Nepomnyashchy, Stability of Convective Flows (Nauka, Moscow, 1989)Google Scholar
  4. 4.
    J.K. Platten, J.C. Legros, Convection in Liquids (Springer, Berlin, 1984)Google Scholar
  5. 5.
    B.I. Nikolaev, A.A. Tubin, Prikl. Mat. Mek. 35, 248 (1971)Google Scholar
  6. 6.
    L.E. Sorokin, Stability of convective flow of binary mixture in the presence of thermodiffusion and vertical concentration gradient, in Convective Flows (PSPU, Perm, 1983) pp. 63--71Google Scholar
  7. 7.
    V.N. Kosov, V.D. Seleznev, Yu.I. Zhavrin, Teplofiz. Aeromekh. 7, 127 (2000)Google Scholar
  8. 8.
    Yu.I. Zhavrin, V.N. Kosov, V.D. Seleznev, Fluid Dyn. 35, 464 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    G.Z. Gershuni, E.M. Zhukhovitskii, L.E. Sorokin, J. Appl. Math. Mech. 46, 54 (1982)CrossRefGoogle Scholar
  10. 10.
    I.I. Ryzhkov, V.M. Shevtsova, Phys. Fluids 21, 014102 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    T.P. Lyubimova, N.A. Zubova, Micrograv. Sci. Technol. 26, 241 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    T.P. Lyubimova, N.A. Zubova, Eur. Phys. J. E 38, 19 (2015)CrossRefGoogle Scholar
  13. 13.
    I.I. Ryzhkov, V.M. Shevtsova, Phys. Fluids 19, 0271101 (2007)CrossRefGoogle Scholar
  14. 14.
    M.A. Goldshtik, V.A. Sapozhnikov, V.A. Shtern, Differential factorisation method in problems of hydrodynamic stability, Proceedings of the GAMM Conference on Numerical Methods in Fluid Mechanics, Oct. 1975, Cologne (DVFLR Institut für Angewandte Gasdynamik, Porz-Wahn, 1975) pp. 52--58Google Scholar
  15. 15.
    T.P. Lyubimova, Ya.N. Parshakova, Fluid Dyn. 42, 695 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    S. Shklyaev, A.A. Nepomnyashchy, A. Oron, Phys. Rev. E 84, 056327 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computational Fluid Dynamics LaboratoryInstitute of Continuous Media Mechanics UB RASPermRussia
  2. 2.Theoretical Physics DepartmentPerm State UniversityPermRussia
  3. 3.MRC, CP-165/62Université Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations