Computer simulations of drug release from a liposome into the bloodstream

  • Badr Kaoui
Regular Article
Part of the following topical collections:
  1. Fluids and Structures: Multi-scale coupling and modeling


I propose two-dimensional simulations of drug release from a liposome into the bloodstream. I perform the fluid-structure coupling, between the particles deformation (the liposome and the red blood cells) and the plasma flow, using the immersed boundary method. I compute both the flow and the drug mass transport using the lattice Boltzmann method. The simulations allow computing the instantaneous amount of the released drug, its distribution and its accumulation in the blood vessel wall. These quantities are sensitive to multiple factors and parameters. Here, I briefly explore the impact of having surrounding red blood cells, which are found to enhance slightly the drug release at large Schmidt numbers. In the limit of extremely large permeability of the particles, the drug transport is mainly affected by the complex flow induced by the interplay between the applied flow and the collective motion of the particles.

Graphical abstract


Topical issue: Fluids and Structures: Multi-scale coupling and modeling 


  1. 1.
    V.P. Torchilin, Nat. Rev. Drug Discov. 4, 145 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Siepmann, F. Siepmann, J. Control. Release 161, 351 (2012)CrossRefGoogle Scholar
  3. 3.
    M.N. Holme et al., Nat. Nanotechnol. 7, 536 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    B. Kaoui, Phys. Rev. E 95, 063310 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    P.M. Vlahovska, T. Podgorski, C. Misbah, C. R. Phys. 10, 775 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    D. Abreu et al., Adv. Colloid Interface Sci. 208, 129 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Kabacaoglu, B. Quaife, G. Biros, Phys. Fluids 29, 021901 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    B. Kaoui et al., Phys. Rev. E 77, 021903 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    U. Seifert, Adv. Phys. 46, 13 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    A.Y. Rwei et al., Nat. Biomed. Eng. 1, 644 (2017)CrossRefGoogle Scholar
  11. 11.
    M.B. Yatvin et al., Science 202, 1290 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (Springer, Germany, 2000)Google Scholar
  13. 13.
    S. Succi, The Lattice Boltzmann Equation for fluid dynamics and beyond (Oxford University Press, Oxford, UK, 2001)Google Scholar
  14. 14.
    M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling (Springer, Berlin, 2006)Google Scholar
  15. 15.
    B. Kaoui, J. Harting, Rheol. Acta 55, 465 (2016)CrossRefGoogle Scholar
  16. 16.
    C.S. Peskin, J. Comput. Phys. 25, 220 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    B. Kaoui, J. Harting, C. Misbah, Phys. Rev. E 83, 066319 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    B. Kaoui, R. Jonk, J. Harting, Soft Matter 10, 4735 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    K. Müller, D.A. Fedosov, G. Gompper, Sci. Rep. 4, 4871 (2014)CrossRefGoogle Scholar
  20. 20.
    R. D’Apolito et al., J. Control. Release 217, 263 (2015)CrossRefGoogle Scholar
  21. 21.
    R. L. Fournier, Basic Transport Phenomena in Biomedical Engineering (Taylor & Francis, Philadelphia, PA, USA, 1999)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biomechanics and Bioengineering Laboratory (UMR 7338), CNRSSorbonne Universités, Université de Technologie de CompiègneCompiègneFrance
  2. 2.Labex MS2T “Control of Technological Systems-of-Systems”, CNRSSorbonne Universités, Université de Technologie de CompiègneCompiègneFrance

Personalised recommendations