Multiple scattering of an ultrasonic shock wave in bubbly media

  • Olivier Lombard
  • Nicolas Viard
  • Valentin Leroy
  • Christophe Barrière
Regular Article


This experimental study deals with the propagation of an ultrasonic shock wave in a random heterogeneous medium, constituted of identical 75μm radius bubbles, trapped in a yield-stress fluid. The fundamental frequency of the incident wave (in the MHz range) was much larger than the resonance frequency of bubbles (38kHz). A well-expanded coda, resulting from the multiple scattering of the incident shock wave through the heterogeneous medium, was experimentally measured in transmission. Despite the significant amplitude of the shock wave (90kPa), no sign of nonlinear response of the bubbles was detected. Both the coherent and incoherent fields were successfully described by linear theories. Using a shock wave presents the advantage of characterizing the medium over a large frequency range (1.5-15MHz).

Graphical abstract


Soft Matter: Self-organisation and Supramolecular Assemblies 


  1. 1.
    A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978)Google Scholar
  2. 2.
    A. Lagendijk, B.A. Van Tiggelen, Phys. Rep. 270, 143 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics 4, Propagation Through Random Media (Springer Verlag, Berlin, Heidelberg, 1989)Google Scholar
  4. 4.
    S. Skypetrov, B. Van Tiggelen, Wave Scattering in Complex Media From Theory to Applications, NATO Science Series, Vol. 107 (Kluwer, Dordrecht, 2003)Google Scholar
  5. 5.
    A. Derode, A. Tourin, M. Fink, Phys. Rev. E 64, 036605 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    L. Foldy, Phys. Rev. 67, 107 (1945)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P.C. Watermann, R. Truel, J. Math. Phys. 2, 512 (1961)ADSCrossRefGoogle Scholar
  8. 8.
    C.M. Linton, P.A. Martin, J. Acoust. Soc. Am. 117, 3413 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A. Derode, V. Mamou, A. Tourin, Phys. Rev. E 74, 036606 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    J.H. Page, H.P. Schriemer, I.P. Jones, P. Sheng, D.A. Weitz, Physica A 241, 64 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Page, H.P. Schriemer, A.E. Baily, D.A. Weitz, Phys. Rev. E 52, 3106 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    A. Aubry, A. Derode, Phys. Rev. E 75, 026602 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    B. Tallon, T. Brunet, J.H. Page, Phys. Rev. Lett. 119, 164301 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    M. Minnaert, Philos. Mag. 16, 235 (1933)CrossRefGoogle Scholar
  15. 15.
    T.G. Leighton, The Acoustic Bubble (Academic Press, 1994)Google Scholar
  16. 16.
    V. Leroy, A. Strybulevych, J.H. Page, M.G. Scanlon, J. Acoust. Soc. Am. 123, 1931 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    P. Coussot, J. Non-Newton. Fluid Mech. 211, 31 (2014)CrossRefGoogle Scholar
  18. 18.
    N. Viard, B. Giammarinaro, A. Derode, C. Barrière, Phys. Rev. E 88, 023201 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Academic Press, New York, 1998)Google Scholar
  20. 20.
    C. Barrière, D. Royer, Appl. Phys. Lett. 79, 878 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    F. Van Der Biest, Diffusion multiple et renversement du temps ultrasonore dans des milieux périodiques et désordonnés, Thèse de doctorat de l’Université Paris Diderot (2005)Google Scholar
  22. 22.
    I.S. Kol’tsova, L.O. Krynskii, I.G. Mikhailov, I.E. Pokrovskaya, Akust. Zh. 25, 725 (1979)Google Scholar
  23. 23.
    J.R. Allegra, S.A. Hawley, J. Acoust. Soc. Am. 51, 1545 (1972)ADSCrossRefGoogle Scholar
  24. 24.
    V. Leroy, A. Derode, Phys. Rev. E 77, 036602 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    M.L. Cowan, I.P. Jones, J.H. Page, D.A. Weitz, Phys. Rev. E 65, 066605 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    E.A. Zabolotskaya, Sov. Phys. Acoust. 21, 569 (1976)Google Scholar
  27. 27.
    J. Wu, Z. Zhu, J. Acoust. Soc. Am. 89, 2634 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    J. Wu, J. Tong, Ultrasound Med. Biol. 24, 153 (1997)CrossRefGoogle Scholar
  29. 29.
    O. Lombard, C. Barrière, V. Leroy, EPL 112, 24002 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    O. Lombard, C. Barrière, V. Leroy, Ultrasonics 78, 110 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Olivier Lombard
    • 1
  • Nicolas Viard
    • 2
  • Valentin Leroy
    • 1
  • Christophe Barrière
    • 2
  1. 1.Laboratoire MSCUniversité Paris-Diderot, CNRS (UMR 7057)ParisFrance
  2. 2.Institut LangevinUniversité Paris-Diderot, ESPCI, CNRS (UMR 7587)ParisFrance

Personalised recommendations