Advertisement

An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces

  • Jun-Jie Huang
  • Jie Wu
  • Haibo Huang
Regular Article

Abstract.

We propose an alternative method to implement the contact angle boundary condition on a solid wall and apply it in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces in which the flow equations are solved by the lattice-Boltzmann method and the interface equations are solved by the finite-difference method. Using the hyperbolic tangent profile of the order parameter across an interface in phase-field theory, we were able to obtain its unknown value at a ghost point from the information at only one point in the fluid domain. This is in contrast with existing approaches relying on interpolations involving several points. The special feature allows it to be more easily implemented on immersed surfaces cutting through the grid lines. It was properly incorporated into the framework of the hybrid lattice-Boltzmann finite-difference simulation, and applied successfully for several problems with different levels of complexity. First, the equilibrium shapes of a droplet on a sphere with different contact angles and radii were studied under cylindrical geometry and a good agreement with theoretical predictions was found. Preliminary studies on a three-dimensional droplet spreading on a sphere were also performed and the results agreed well with the corresponding axisymmetric results. Second, the spreading of a two-dimensional drop on an embedded inclined wall with a given contact angle was investigated and the results matched those on a flat wall at the domain boundary under the same condition. Third, capillary filling in a cylindrical tube was studied and the speed of the interface in the tube was found to follow Washburn’s law. Fourth, a droplet impacting on a sphere was investigated and several different outcomes were captured depending on the Reynolds number, the viscosity ratio, and the wettability and radius of the sphere. Finally, the proposed method was shown to be capable of studying even more complicated problems involving the interaction between a droplet and multiple objects of different sizes and contact angles.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    P.-G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004)Google Scholar
  2. 2.
    Y. Sui, H. Ding, P.D.M. Spelt, Annu. Rev. Fluid Mech. 46, 97 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    R. Scardovelli, S. Zaleski, Annu. Rev. Fluid Mech. 31, 567 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    S. Osher, R. Fedkiw, Level Sets Methods and Dynamic Implicit Surfaces (Springer, 2002)Google Scholar
  5. 5.
    D.M. Anderson, G.B. McFadden, A.A. Wheeler, Annu. Rev. Fluid Mech. 30, 139 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    D. Jacqmin, J. Comput. Phys. 155, 96 (1999)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V.E. Badalassi, H.D. Ceniceros, S. Banerjee, J. Comput. Phys. 190, 371 (2003)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.-J. Huang, H. Huang, X. Wang, Int. J. Numer. Methods Fluids 77, 123 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    H. Ding, P.D.M. Spelt, Phys. Rev. E 75, 046708 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    H.G. Lee, J. Kim, Comput. Fluids 44, 178 (2011)CrossRefGoogle Scholar
  11. 11.
    H.-R. Liu, H. Ding, J. Comput. Phys. 294, 484 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Fakhari, D. Bolster, J. Comput. Phys. 334, 620 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Y. Ge, L.-S. Fan, J. Fluid Mech. 573, 311 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Y.-P. Li, H.-R. Wang, Can. J. Chem. Eng. 89, 83 (2011)Google Scholar
  15. 15.
    D. Zhang, K. Papadikis, S. Gu, Int. J. Therm. Sci. 84, 75 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Liu, M. Andrew, J. Li, J.M. Yeomans, Z. Wang, Nat. Commun. 6, 10034 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J.-J. Huang, H. Huang, C. Shu, Y.T. Chew, S.-L. Wang, J. Phys. A 46, 055501 (2013)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    T. Lee, Comput. Math. Appl. 58, 987 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    T. Lee, L. Liu, J. Comput. Phys. 229, 8045 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J.J. Huang, C. Shu, Y.T. Chew, Int. J. Numer. Methods Fluids 60, 203 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    D. D'Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo, Philos. Trans. R. Soc. Lond. A 360, 437 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    P. Lallemand, L.-S. Luo, Phys. Rev. E 61, 6546 (2000)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Kim, J. Comput. Phys. 204, 784 (2005)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Peng, L.-S. Luo, Prog. Comput. Fluid Dyn. 8, 156 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Yue, C. Zhou, J.J. Feng, J. Fluid Mech. 645, 279 (2010)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    E.W. Weisstein, Spherical Cap, http://mathworld.wolfram.com/SphericalCap.html
  28. 28.
    P. Yue, C. Zhou, J.J. Feng, J. Comput. Phys. 223, 1 (2007)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    C. Pooley, H. Kusumaatmaja, J. Yeomans, Eur. Phys. J. ST 171, 63 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Chibbaro, L. Biferale, F. Diotallevi, S. Succi, Eur. Phys. J. ST 171, 223 (2009)CrossRefGoogle Scholar
  31. 31.
    E.W. Washburn, Phys. Rev. 17, 273 (1921)ADSCrossRefGoogle Scholar
  32. 32.
    J.-J. Huang, H. Huang, X. Wang, Phys. Fluids 26, 062101 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    A.L. Yarin, Annu. Rev. Fluid Mech. 38, 159 (2006)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    H.B. Eral, G. Manukyan, J.M. Oh, Langmuir 27, 5340 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, College of Aerospace EngineeringChongqing UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Heterogeneous Material Mechanics(Chongqing University)ChongqingChina
  3. 3.State Key Laboratory of Mechanical TransmissionChongqing UniversityChongqingChina
  4. 4.Department of AerodynamicsNanjing University of Aeronautics and AstronauticsNanjing, JiangsuChina
  5. 5.Department of Modern MechanicsUniversity of Science and Technology of ChinaHefei, AnhuiChina

Personalised recommendations