Coalescence of droplets laden with insoluble surfactant on a preset liquid film

  • Chunxi Li
  • Yuxi Lin
  • Ran Zhang
  • Xuemin Ye
Regular Article


A model for the evolution of two droplets laden with insoluble surfactant coalescing on a preset film is established according to the lubrication theory, and the coalescence processes are simulated. The role of the surfactant and its inherent mechanism are investigated, the effects of the Marangoni number, the preset liquid film thickness and the initial spacing between the two droplets on the coalescence are examined. The results show that the droplets encounter each other, gradually overlap, and finally coalesce into a “new” droplet. The Marangoni effect is beneficial to the convergence of the two inner leading fronts of the droplets in the early stage, but it hinders the accumulation of the droplets and subsequent coalescence. Increasing the Marangoni number promotes not only the aforementioned inhibition, but also the convergence of the two leading fronts towards the center, which speeds up the coalescence of the surfactant. Moreover, the diffusion of the surfactant towards the outsides of the droplets is accelerated; hence, its distribution along the droplet surface is more uniform after the coalescence. The droplets and the surfactant undertake a longer “journey” to achieve coalescence when their initial spacing is increased; increasing the preset film thickness shortens the time of coalescence required.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 


  1. 1.
    A. Oprisan, S.A. Oprisan, J.J. Hegseth, Y. Garrabos, D. Beysens, Eur. Phys. J. E 37, 85 (2014)CrossRefGoogle Scholar
  2. 2.
    R. Borcia, M. Bestehorn, Eur. Phys. J. E 34, 81 (2011)CrossRefGoogle Scholar
  3. 3.
    D.G.A.L. Aarts, H.N.W. Lekkerkerker, H. Guo, G.H. Wegdam, D. Bonn, Phys. Rev. Lett. 95, 164503 (2005)CrossRefADSGoogle Scholar
  4. 4.
    J. Qian, C.K. Law, J. Fluid Mech. 331, 59 (1997)CrossRefADSGoogle Scholar
  5. 5.
    S. Arditty, C.P. Whitby, B.P. Binks, V. Schmitt, F. Lealcalderon, Eur. Phys. J. E 11, 273 (2003)CrossRefGoogle Scholar
  6. 6.
    D. Zang, Y. Yu, C. Zhen et al., Adv. Colloid Interface Sci. 243, 77 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Gu, M.H.G. Duits, F. Mugele, Int. J. Mol. Sci. 12, 2572 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Vannozzi, Phys. Fluids 24, 082101 (2012)CrossRefADSGoogle Scholar
  9. 9.
    C. Zhen, D. Zang, L. Zhao et al., Langmuir 33, 6232 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Liu, P. Cheng, X. Quan, Int. J. Heat Mass Transfer 73, 195 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Jiang, L. Lu, W. Lu, Acta Phys. Sin. 62, 224701 (2013)Google Scholar
  12. 12.
    J.J. Monaghan, Annu. Rev. Astron. Astrophys. 30, 543 (1992)CrossRefADSGoogle Scholar
  13. 13.
    M. Liu, G. Liu, Arch. Comput. Methods Eng. 17, 25 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Aryafar, H.P. Kavehpour, Phys. Fluids 18, 072105 (2006)CrossRefADSGoogle Scholar
  15. 15.
    D.W. Martin, F. Blanchette, Phys. Fluids 27, 012103 (2015)CrossRefADSGoogle Scholar
  16. 16.
    S.T. Thoroddsen, B. Qian, T.G. Etoh, K. Takehara, Phys. Fluids 19, 072110 (2007)CrossRefADSGoogle Scholar
  17. 17.
    V. Chireux, D. Fabre, F. Risso, P. Tordjeman, Phys. Fluids 27, 062103 (2015)CrossRefADSGoogle Scholar
  18. 18.
    G. Chen, P. Tan, S. Chen, J. Huang, W. Wen, L. Xu, Phys. Rev. Lett. 110, 064502 (2013)CrossRefADSGoogle Scholar
  19. 19.
    J. Eggers, J.R. Lister, H.A. Stone, J. Fluid Mech. 401, 293 (1999)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    L. Duchemin, J. Eggers, C. Josserand, J. Fluid Mech. 487, 167 (2003)CrossRefADSGoogle Scholar
  21. 21.
    M. Wu, T. Cubaud, C. Ho, Phys. Fluids 16, L51 (2004)CrossRefADSGoogle Scholar
  22. 22.
    S.T. Thoroddsen, K. Takehara, T.G. Etoh, J. Fluid Mech. 527, 85 (2005)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    C. Li, PhD Thesis, North China Electric Power University, China (2011)Google Scholar
  24. 24.
    O.E. Jensen, S. Naire, J. Fluid Mech. 554, 5 (2006)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    K.S. Lee, V.M. Starov, J. Colloid Interface Sci. 314, 631 (2007)CrossRefADSGoogle Scholar
  26. 26.
    A. De Witt, D. Gallez, C.I. Christov, Phys. Fluids 6, 3256 (1994)CrossRefADSGoogle Scholar
  27. 27.
    O.E. Jensen, J.B. Grotberg, Phys. Fluids A 5, 58 (1993)CrossRefADSGoogle Scholar
  28. 28.
    B.D. Edmonstone, O.K. Matar, J. Colloid Interface Sci. 274, 183 (2004)CrossRefADSGoogle Scholar
  29. 29.
    B.D. Edmonstone, O.K. Matar, R.V. Craster, Physica D 209, 62 (2005)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009)CrossRefADSGoogle Scholar
  31. 31.
    R.V. Craster, O.K. Matar, Langmuir 23, 2588 (2007)CrossRefGoogle Scholar
  32. 32.
    M.R.E. Warner, R.V. Craster, O.K. Matar, Phys. Fluids 14, 4040 (2002)CrossRefADSGoogle Scholar
  33. 33.
    C. Li, P. Chen, X. Ye, Acta Phys. Sin. China 64, 14702 (2015)Google Scholar
  34. 34.
    X. Ye, L. Shen, C. Li, Chin. J. Comput. Phys. 30, 361 (2013)Google Scholar
  35. 35.
    X. Ye, L. Shen, C. Li, CIESC J. 63, 2507 (2012)Google Scholar
  36. 36.
    A. Akyurtlu, J.F. Akyurtlu, K.S. Denison, C.E. Hamrin jr., Comput. Chem. Eng. 10, 213 (1986)CrossRefGoogle Scholar
  37. 37.
    M.R.E. Warner, R.V. Craster, O.K. Matar, J. Fluid Mech. 510, 169 (2004)MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    B. Dai, L.G. Leal, A. Redondo, Phys. Rev. E 78, 176 (2008)CrossRefGoogle Scholar
  39. 39.
    J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Nat. Mater. 2, 59 (2003)CrossRefADSGoogle Scholar
  40. 40.
    A.B. Afsar-Siddiqui, P.F. Luckham, O.K. Matar, Langmuir 19, 696 (2003)CrossRefGoogle Scholar
  41. 41.
    Q. Yuan, W. Shen, Y. Zhao, Adv. Mech. 46, 201608 (2016)Google Scholar
  42. 42.
    Q. Liao, S. Xing, H. Wang, J. Eng. Thermophys. 27, 319 (2006)Google Scholar
  43. 43.
    J. Lu, C.M. Corvalan, Chem. Eng. Sci. 78, 9 (2012)CrossRefGoogle Scholar
  44. 44.
    Z. Du, R. Xing, X. Cao, Polymer 115, 45 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.North China Electric Power UniversityBaodingChina

Personalised recommendations