Advertisement

Thermophysical properties of nanofluids

Regular Article
Part of the following topical collections:
  1. Non-equilibrium processes in multicomponent and multiphase media

Abstract.

This paper discusses the current state of knowledge of the thermophysical properties of nanofluids. The viscosity, thermal conductivity and heat transfer of nanofluids are considered. Experimental and molecular dynamics data are presented. It is shown that viscosity and thermal conductivity of nanofluids generally cannot be described by classical theories. The transport coefficients of nanofluids depend not only on the volume concentration of the particles but also on their size and material. The viscosity increases with decreasing the particle size while the thermal conductivity increases with increasing the particle size. The reasons for this behavior are discussed. The heat transfer coefficient is determined by the nanofluid flow mode (laminar or turbulent). The use of the nanofluids as a coolant significantly affects the magnitude of the heat transfer coefficient. In laminar flow the heat transfer coefficient of nanofluids in all cases is much more than that of base fluids. It is shown that a 2%-nanofluid intensifies the heat exchange more than twice compared to water. The effect of using nanofluids in turbulent mode depends not only on the thermal conductivity of the nanofluid, but also on its viscosity.

Graphical abstract

Keywords

Topical issue: Non-equilibrium processes in multicomponent and multiphase media 

References

  1. 1.
    D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995) p. 549Google Scholar
  2. 2.
    V.Ya. Rudyak, S.L. Krasnolutskii, Dokl. Phys. 46, 897 (2011)CrossRefGoogle Scholar
  3. 3.
    V.Ya. Rudyak, S.L. Krasnolutskii, D.A. Ivanov, Dokl. Phys. 57, 33 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A. Einstein, Ann. Phys. 19, 289 (1906)CrossRefGoogle Scholar
  5. 5.
    M. Mooney, J. Colloid Sci. 6, 162 (1951)CrossRefGoogle Scholar
  6. 6.
    I.M. Krieger, T.J. Dougherty, J. Rheol. 3, 137 (1959)ADSGoogle Scholar
  7. 7.
    N.A. Frankel, A. Acrivos, Chem. Eng. Sci. 22, 847 (1967)CrossRefGoogle Scholar
  8. 8.
    I.M. Krieger, Adv. Colloid Interface Sci. 3, 111 (1972)CrossRefGoogle Scholar
  9. 9.
    G.K. Batchelor, J. Fluid Mech. 83, 97 (1977)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Acrivos, E.Y. Chang, Phys. Fluids 29, 459 (1986)CrossRefGoogle Scholar
  11. 11.
    S.Sh. Hosseini, A. Shahrjerdi, Y. Vazifeshenas, Aust. J. Basic Appl. Sci. 5, 417 (2011)Google Scholar
  12. 12.
    D.C. Venerus et al., Appl. Rheol. 20, 44582 (2010)Google Scholar
  13. 13.
    M. Mahbubul, R. Saidur, M.A. Amalina, Int. J. Heat Mass Transf. 55, 874 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Chen et al., Chem. Phys. Lett. 444, 333 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    P.K. Namburu et al., Micro Nano Lett. 2, 67 (2007)CrossRefGoogle Scholar
  16. 16.
    C.T. Nguyen et al., Int. J. Therm. Sci. 47, 103 (2008)CrossRefGoogle Scholar
  17. 17.
    F.S. Oueslati, R. Bennace, Nanoscale Res. Lett. 6, 222 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    B.C. Pak, Y.I. Cho, Exp. Heat Transf. 11, 151 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    X. Wang, X. Xu, S.U.S. Choi, Thermophys. Heat Transf. 13, 474 (1999)CrossRefGoogle Scholar
  20. 20.
    V.Ya. Rudyak, preprint (NSUACE, Novosibirsk, 2006)Google Scholar
  21. 21.
    V.Ya. Rudyak, A.A. Belkin, V.V. Egorov, Tech. Phys. 54, 1102 (2009)CrossRefGoogle Scholar
  22. 22.
    R. Prasher, D. Song, J. Wang, Appl. Phys. Lett. 89, 133108 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Y. He et al., Int. J. Heat Mass Transf. 50, 2272 (2007)CrossRefGoogle Scholar
  24. 24.
    E.V. Timofeeva et al., Nanotechnology 21, 215703 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    V.Ya. Rudyak et al., Dokl. Phys. 58, 173 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    V.Ya. Rudyak, S.L. Krasnolutskii, Phys. Lett. A 378, 1845 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    V.Ya. Rudyak et al., Dokl. Phys. 61, 152 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    V.Ya. Rudyak, S.V. Dimov, V.V. Kuznetsov, Tech. Phys. Lett. 39, 779 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    V.Ya. Rudyak, Adv. Nanopart. 2, 266 (2013)CrossRefGoogle Scholar
  30. 30.
    V.Ya. Rudyak, S.L Krasnolutskii, Tech. Phys. 60, 798 (2015)CrossRefGoogle Scholar
  31. 31.
    X.-Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)CrossRefGoogle Scholar
  32. 32.
    W. Yu et al., Heat Transf. Eng. 5, 432 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    K. Kleinstreuer, F. Yu, Nanoscale Res. Lett. 6, 1 (2011)CrossRefGoogle Scholar
  34. 34.
    C.H. Chon, Appl. Phys. Lett. 87, 153107 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    C.H. Li, G.P. Peterson, Appl. Phys. 101, 044312 (2007)CrossRefGoogle Scholar
  36. 36.
    H.A. Mintsa et al., Int. J. Therm. Sci. 48, 363 (2009)CrossRefGoogle Scholar
  37. 37.
    S.H. Kim, S.R. Choi, D. Kim, ASME J. Heat Transf. 129, 298 (2007)CrossRefGoogle Scholar
  38. 38.
    G. Chen et al., Nanopart. Res. 10, 1109 (2008)CrossRefGoogle Scholar
  39. 39.
    M.P. Beck et al., Nanopart. Res. 11, 1129 (2009)CrossRefGoogle Scholar
  40. 40.
    E.V. Timofeeva et al., Nanotechnology 21, 215703 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881)Google Scholar
  42. 42.
    P.M. Kumar et al., Eng. J. 19, 67 (2015)CrossRefGoogle Scholar
  43. 43.
    W. Rashmi et al., Mater. Res. Express 1, 032001 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    A.V. Minakov et al., Eng. Phys. Thermophys. 88, 149 (2015)CrossRefGoogle Scholar
  45. 45.
    H.T. Zhu et al., Phys. Chem. C 111, 1646 (2007)CrossRefGoogle Scholar
  46. 46.
    V.Ya. Rudyak, A.A. Belkin, E.A. Tomilina, in Proceedings of the 3d European Conference on Microfluidics, Vol. 152 (2012) p. 8Google Scholar
  47. 47.
    P. Keblinski, R. Prasher, J. Eapen, Nanopartart. Res. 10, 1089 (2008)CrossRefGoogle Scholar
  48. 48.
    M.I. Pryazhnikov et al., Int. J. Heat Mass Transf. 104, 1275 (2017)CrossRefGoogle Scholar
  49. 49.
    D. Ceotto, V.Ya. Rudyak, Colloid J. 78, 509 (2016)CrossRefGoogle Scholar
  50. 50.
    V.Ya. Rudyak, A.A. Belkin, Nanosyst.: Phys. Chem. Math. 1, 156 (2010)Google Scholar
  51. 51.
    V.Ya. Rudyak, A.A. Belkin, E.A. Tomilina, Tech. Phys. Lett. 36, 49 (2010)CrossRefGoogle Scholar
  52. 52.
    D. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974)Google Scholar
  53. 53.
    V.Ya. Rudyak et al., High Temp. 46, 30 (2008)CrossRefGoogle Scholar
  54. 54.
    V.Ya. Rudyak, S.L Krasnolutskii, Tech. Phys. 62, 894 (2017)CrossRefGoogle Scholar
  55. 55.
    P. Keblinski et al., Int. J. Heat Mass Transf. 45, 855 (2002)CrossRefGoogle Scholar
  56. 56.
    C. Kleinstreuer, Y. Feng, Nanoscale Res. Lett. 6, 229 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    A.V. Minakov et al., High Temp. 53, 246 (2015)CrossRefGoogle Scholar
  58. 58.
    A.V. Minakov et al., Appl. Therm. Eng. 88, 140 (2015)CrossRefGoogle Scholar
  59. 59.
    V.Y. Rudyak, A.V. Minakov, M.I. Pryazhnikov, Tech. Phys. Lett. 43, 23 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Novosibirsk State University of Architecture and Civil EngineeringNovosibirskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations