Advertisement

3D reconstruction of dynamic liquid film shape by optical grid deflection method

  • L. Fourgeaud
  • E. Ercolani
  • J. Duplat
  • P. Gully
  • V. S. Nikolayev
Tips and Tricks

Abstract.

In this paper, we describe the optical grid deflection method used to reconstruct the 3D profile of liquid films deposited by a receding liquid meniscus. This technique uses the refractive properties of the film surface and is suitable for liquid thickness from several microns to millimeter. This method works well for strong interface slopes and changing in time film shape; it applies when the substrate and fluid media are transparent. The refraction is assumed to be locally unidirectional. The method is particularly appropriate to follow the evolution of parameters such as dynamic contact angle, triple liquid-gas-solid contact line velocity or dewetting ridge thickness.

Graphical abstract

Keywords

Tips and Tricks 

References

  1. 1.
    J. Kurata, K.T.V. Grattan, H. Uchiyama, T. Tanaka, Rev. Sci. Instrum. 61, 736 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    V. Gurfein, D. Beysens, Y. Garrabos, B.L. Neindre, Opt. Commun. 85, 147 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    J. Hegseth, A. Oprisan, Y. Garrabos, V.S. Nikolayev, C. Lecoutre-Chabot, D. Beysens, Phys. Rev. E 72, 031602 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    C. Andrieu, D. Chatenay, C. Sykes, C. R. Acad. Sci., Ser. IIb 320, 351 (1995)Google Scholar
  5. 5.
    M. Banaha, A. Daerr, L. Limat, Eur. Phys. J. ST 166, 185 (2009)CrossRefGoogle Scholar
  6. 6.
    T. Kajiya, A. Daerr, T. Narita, L. Royon, F. Lequeux, L. Limat, Soft Matter 7, 11425 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    F. Moisy, M. Rabaud, K. Salsac, Exp. Fluids 46, 1021 (2009)CrossRefGoogle Scholar
  8. 8.
    J.H. Snoeijer, G. Delon, M. Fermigier, B. Andreotti, Phys. Rev. Lett. 96, 174504 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    P. Gao, L. Li, X.Y. Lu, Phys. Rev. E 91, 023008 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    L. Fourgeaud, E. Ercolani, J. Duplat, P. Gully, V.S. Nikolayev, Phys. Rev. Fluids 1, 041901 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    P.C. Wayner, Y.K. Kao, L.V. LaCroix, Int. J. Heat Mass Transfer 19, 487 (1976)CrossRefGoogle Scholar
  12. 12.
    R. Raj, C. Kunkelmann, P. Stephan, J. Plawsky, J. Kim, Int. J. Heat Mass Transfer 55, 2664 (2012)CrossRefGoogle Scholar
  13. 13.
    V. Janeček, V.S. Nikolayev, EPL 100, 14003 (2012)CrossRefGoogle Scholar
  14. 14.
    L. Fourgeaud, V.S. Nikolayev, E. Ercolani, J. Duplat, P. Gully, Appl. Therm. Eng. 126, 1023 (2017)CrossRefGoogle Scholar
  15. 15.
    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    J.H. Snoeijer, J. Ziegler, B. Andreotti, M. Fermigier, J. Eggers, Phys. Rev. Lett. 100, 244502 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • L. Fourgeaud
    • 1
    • 2
  • E. Ercolani
    • 2
  • J. Duplat
    • 2
  • P. Gully
    • 2
  • V. S. Nikolayev
    • 3
  1. 1.PSAVélizy-VillacoublayFrance
  2. 2.Université Grenoble Alpes, CEA, INAC, Service des Basses TempératuresGrenobleFrance
  3. 3.Service de Physique de l’État Condensé, CEA, CNRSUniversité Paris-Saclay, CEA SaclayGif-sur-Yvette CedexFrance

Personalised recommendations