Advertisement

Membrane undulations in a structured fluid: Universal dynamics at intermediate length and time scales

  • Rony Granek
  • Haim Diamant
Regular Article
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)

Abstract.

The dynamics of membrane undulations inside a viscous solvent is governed by distinctive, anomalous, power laws. Inside a viscoelastic continuous medium these universal behaviors are modified by the specific bulk viscoelastic spectrum. Yet, in structured fluids the continuum limit is reached only beyond a characteristic correlation length. We study the crossover to this asymptotic bulk dynamics. The analysis relies on a recent generalization of the hydrodynamic interaction in structured fluids, which shows a slow spatial decay of the interaction toward the bulk limit. For membranes which are weakly coupled to the structured medium we find a wide crossover regime characterized by different, universal, dynamic power laws. We discuss various systems for which this behavior is relevant, and delineate the time regime over which it may be observed.

Graphical abstract

Keywords

Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 

References

  1. 1.
    B. Alberts, Essential Cell Biology, 4th edition (Garland Science, 2013)Google Scholar
  2. 2.
    U. Seifert, Adv. Phys. 46, 13 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Safran, Statistical Thermodynamics Of Surfaces, Interfaces, and Membranes (Westview Press, 2003)Google Scholar
  4. 4.
    F. Brochard, J.F. Lennon, J. Phys. (Paris) 36, 1035 (1975)CrossRefGoogle Scholar
  5. 5.
    U. Seifert, S.A. Langer, Europhys. Lett. 23, 71 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    A.G. Zilman, R. Granek, Phys. Rev. Lett. 77, 4788 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    A.G. Zilman, R. Granek, Chem. Phys. 284, 195 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M.C. Watson, Y. Peng, Y. Zheng, F.L.H. Brown, J. Chem. Phys. 135, 194701 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    R.J. Bingham, S.W. Smye, P.D. Olmsted, EPL 111, 18004 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    R. Granek, J. Phys. II 7, 1761 (1997)Google Scholar
  11. 11.
    R. Joannic, L. Auvray, D.D. Lasic, Phys. Rev. Lett. 78, 3402 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    E. Sackmann, M. Tanaka, Trends Biotechnol. 18, 58 (2000)CrossRefGoogle Scholar
  13. 13.
    M. Tanaka, E. Sackmann, Nature 437, 656 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    M. Mihailescu, M. Monkenbusch, J. Allgaier, H. Frielinghaus, D. Richter, Phys. Rev. E 66, 041504 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    R. Iniguez-Palomares, H. Acuna-Campa, A. Maldonado, Phys. Rev. E 84, 011604 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    F.-C. Tsai, B. Stuhrmann, G.H. Koenderink, Langmuir 27, 10061 (2011)CrossRefGoogle Scholar
  17. 17.
    R. Granek, Soft Matter 7, 5281 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1988)Google Scholar
  19. 19.
    A. Sonn-Segev, A. Bernheim-Grosswasser, H. Diamant, Y. Roichman, Phys. Rev. Lett. 112, 088301 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    A. Sonn-Segev, A. Bernheim-Grosswasser, Y. Roichman, Soft Matter 10, 8324 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    H. Diamant, Eur. Phys. J. E 38, 32 (2015)CrossRefGoogle Scholar
  22. 22.
    P.-G. de Gennes, Macromolecules 9, 587 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    P.-G. de Gennes, Macromolecules 9, 594 (1976)ADSCrossRefGoogle Scholar
  24. 24.
    M. Doi, A. Onuki, J. Phys. II 2, 1631 (1992)Google Scholar
  25. 25.
    S.T. Milner, Phys. Rev. E 48, 3674 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    A.J. Levine, T.C. Lubensky, Phys. Rev. E 63, 041510 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    J.-B. Fournier, Int. J. Nonlinear Mech. 75, 67 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    H. Diamant, Isr. J. Chem. 47, 225 (2007)CrossRefGoogle Scholar
  29. 29.
    M. Rubinstein, E. Colby, Polymer Physics (Oxford, 2003)Google Scholar
  30. 30.
    R. Granek, M.E. Cates, J. Chem. Phys. 96, 4758 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    C.P. Broedersz, F.C. MacKintosh, Rev. Mod. Phys. 86, 995 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    F. Gittes, F.C. MacKintosh, Phys. Rev. E 58, R1241 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    D.C. Morse, Macromolecules 31, 7044 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Stella and Avram Goren-Goldstein Department of Biotechnology EngineeringBen-Gurion University of The NegevBeer ShevaIsrael
  2. 2.Raymond & Beverly Sackler School of ChemistryTel Aviv UniversityTel AvivIsrael

Personalised recommendations