Advertisement

Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method

  • Heping Wang
  • Duyang Zang
  • Xiaoguang Li
  • Xingguo Geng
Regular Article
  • 79 Downloads

Abstract.

This paper presents an exploration of the phase separation behavior and pattern formation in a binary fluid with temperature-dependent viscosity via a coupled lattice Boltzmann method (LBM). By introducing a viscosity-temperature relation into the LBM, the coupling effects of the viscosity-temperature coefficient \(\beta\) , initial viscosity \(\eta_{\infty}\) and thermal diffusion coefficient \( D\) , on the phase separation were successfully described. The calculated results indicated that an increase in initial viscosity and viscosity-temperature coefficient, or a decrease in the thermal diffusion coefficient, can lead to the orientation of isotropic growth fronts over a wide range of viscosity. The results showed that droplet-type phase structures and lamellar phase structures with domain orientation parallel or perpendicular to the walls can be obtained in equilibrium by controlling the initial viscosity, thermal diffusivity, and the viscosity-temperature coefficient. Furthermore, the dataset was rearranged for growth kinetics of domain growth and thermal diffusion fronts in a plot by the spherically averaged structure factor and the ratio of separated and continuous phases. The analysis revealed two different temporal regimes: spinodal decomposition and domain growth stages, which further quantified the coupled effects of temperature and viscosity on the evolution of temperature-dependent phase separation. These numerical results provide guidance for setting optimum temperature ranges to obtain expected phase separation structures for systems with temperature-dependent viscosity.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    A. Xu, G. Gonnella, A. Lamura, Phys. Rev. E 67, 115 (2003)Google Scholar
  2. 2.
    G. Gonnella, A. Lamura, V. Sofonea, Phys. Rev. E 76, 036703 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Gunton, M.S. Migue, P. Sahni, Phase Transition and Critical Phenomena, Vol. 8 (Academic Press, London, 1983)Google Scholar
  4. 4.
    A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, England, 2002)Google Scholar
  5. 5.
    S.M. Dubiel, J. Zukrowski, Acta Mater. 61, 6207 (2012)CrossRefGoogle Scholar
  6. 6.
    D.Y. Zang, H.P. Wang, F.P. Dai, D. Langevin, B. Wei, Appl. Phys. A 102, 141 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    F. Corberi, G. Gonnella, A. Lamura, Phys. Rev. Lett. 83, 4057 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    A. Voit, A. Krekov, W. Enge, L. Kramer, W. Köhler, Phys. Rev. Lett. 94, 214501 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    J.K. Platten, G. Chavepeyer, Physica A 213, 110 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    G. Chavepeyer, J.K. Platten, M. Salajan, J. Non-Equil. Thermodyn. 21, 122 (1997)ADSGoogle Scholar
  11. 11.
    J. Kumaki, T. Hashimoto, S. Granick, Phys. Rev. Lett. 77, 1990 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    J. Okinaka, Q. Tran-Cong, Physica D (Amsterdam) 84, 23 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Tran-Cong, J. Okinaka, J. Polym. Eng. Sci. 39, 365 (1999)CrossRefGoogle Scholar
  14. 14.
    M. Yamamura, S. Nakamura, T. Kajiwara, H. Kage, K. Adachi, Polymer 44, 4699 (2003)CrossRefGoogle Scholar
  15. 15.
    A. Onuki, Phys. Rev. Lett. 48, 753 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    H. Tanaka, T. Sigehuzi, Phys. Rev. Lett. 75, 874 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    A. Jacot, M. Rappaz, R.C. Reed, Acta Mater. 46, 3949 (1998)CrossRefGoogle Scholar
  18. 18.
    A.P. Krekhov, L. Kramer, Phys. Rev. E 70, 264 (2004)CrossRefGoogle Scholar
  19. 19.
    J.S. Langer, Rev. Mod. Phys. 52, 1 (1980)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    L.P. Cheng, D.J. Lin, C.H. Shih, A.H. Dwan, C.C. Gryte, J. Polym. Sci. 37, 2079 (1999)CrossRefGoogle Scholar
  21. 21.
    T. Antal, M. Droz, J. Magnin, Z. Racz, Phys. Rev. Lett. 83, 2880 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    A.J. Wagner, J.M. Yeomans, Phys. Rev. E 59, 4366 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)Google Scholar
  24. 24.
    Y.H. Qian, D. d’Humières, P. Lallemand, Europhys. Lett. 17, 479 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    Ioan Pop, R.S.R. Gorla, M. Rashidi, Int. J. Eng. Sci. 30, 1 (1992)CrossRefGoogle Scholar
  26. 26.
    Y. Gan, A. Xu, G. Zhang, P. Zhang, Y. Li, EPL 97, 44002 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    X. He, L. Luo, Phys. Rev. E 55, R6333 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    J. Bray, Adv. Phys. 43, L357 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    W. Saarloos, Phys. Rep. 386, 29 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982)Google Scholar
  32. 32.
    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)ADSCrossRefGoogle Scholar
  33. 33.
    S. Puri, Kinetics of Phase Transitions, Vol. 77 (CRC Press, 2004) pp. 407--431Google Scholar
  34. 34.
    E. Orlandini, M.R. Swift, J.M. Yeomans, Europhys. Lett. 32, 463 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5401 (1996)CrossRefGoogle Scholar
  36. 36.
    N.G. Kafoussias, E.W. Williams, Int. J. Eng. Sci. 33, 1369 (1995)CrossRefGoogle Scholar
  37. 37.
    L.E. Reichl, A Modern Course in Statistical Physics (Arnold, London, 1980)Google Scholar
  38. 38.
    A. Bartoloni, C. Battista, S. Cabasino, P.S. Paolucci, J. Pech, R. Sarno, G.M. Todesco, W. Torelli, P. Vicini, Int. J. Mod. Phys. C 4, 993 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    X. Shan, Phys. Rev. E 55, 2780 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    S. Hou, Q. Zou, S. Chen, G. Doolen, A.C. Cogley, J. Comput. Phys. 118, 329 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    A. Lammura, G. Gonnella, Physica A 294, 295 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    C.F. Ho, C. Chang, K.H. Lin, C.A. Lin, CMES - Comput. Model. Eng. Sci. 44, 137 (2009)MathSciNetGoogle Scholar
  43. 43.
    F.J. Alexander, S. Chen, J.D. Sterling, Phys. Rev. E 47, R2249 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Chen, H. Ohashi, M. Akiyama, Phys. Rev. E 50, 2776 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    P. Lallemand, L.S. Luo, Phys. Rev. E 68, 036706 (2003)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Mezrhab, M. Bouzidi, P. Lallemand, Comput. Fluids 33, 623 (2004)CrossRefGoogle Scholar
  47. 47.
    X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146, 282 (1998)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Z.L. Guo, C.G. Zheng, B.C. Shi, T.S. Zhao, Phys. Rev. E 75, 036704 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    G. McNamara, A.L. Garcia, B.J. Alder, J. Comput. Phys. 81, 395 (1995)Google Scholar
  50. 50.
    D. Hlushkou, D. Kandhai, U. Tallarek, Int. J. Numer. Methods Fluids 46, 507 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    A. Chatterji, J. Horbach, J. Chem. Phys. 122, 18490318 (2005)CrossRefGoogle Scholar
  52. 52.
    H.B. Huang, T.S. Lee, C. Shu, Int. J. Numer. Methods Fluids 53, 1707 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    H. Joshi, A. Agarwal, B. Puranik, C. Shu, A. Agrawal, Int. J. Numer. Methods Fluids 62, 403 (2010)Google Scholar
  54. 54.
    H.B. Luan, H. Xu, L. Chen, Y.L. He, W.Q. Tao, Int. J. Heat Mass Transfer 54, 1975 (2011)CrossRefGoogle Scholar
  55. 55.
    K. Han, Y.T. Feng, D. Owen, Comput. Struct. 85, 1080 (2007)CrossRefGoogle Scholar
  56. 56.
    Z.L. Guo, B.C. Shi, C.G. Zheng, Int. J. Numer. Methods Fluids 39, 325 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    G. Gonnella, A. Lamura, A. Piscitelli, A. Tiribocchi, Phys. Rev. E 82, 046302 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    P. Hantz, I. Biró, Phys. Rev. Lett. 96, 088305 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    E.M. Foard, A.J. Wagner, Phys. Rev. E 79, 056710 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    G. Gonnella, A. Lamura, A. Piscitelli, J. Phys. A 41, 105001 (2008)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    A. Krekhov, Phys. Rev. E 79, 425 (2009)CrossRefGoogle Scholar
  62. 62.
    F.J. Alexander, S. Chen, D.W. Grunau, Phys. Rev. B 48, 634 (1993)ADSCrossRefGoogle Scholar
  63. 63.
    F. Corberi, G. Gonnella, A. Lamura, Phys. Rev. E 66, 016114 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    Y. Gan, A. Xu, G. Zhang, Y. Li, H. Li, Phys. Rev. E 84, 4547 (2010)Google Scholar
  65. 65.
    M. Necatiözisik, Heat Conduction, 2nd edition (Wiley, New York, 1993)Google Scholar
  66. 66.
    H. Liu, Y. Zhang, A.J. Valocchi, J. Comput. Phys. 231, 4433 (2012)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    H. Liu, A.J. Valocchi, Y. Zhang, Q. Kang, J. Comput. Phys. 256, 334 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Heping Wang
    • 1
  • Duyang Zang
    • 1
  • Xiaoguang Li
    • 1
  • Xingguo Geng
    • 1
  1. 1.Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations