What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation

  • Qianxiang Xiao
  • Yawei Liu
  • Zhenjiang Guo
  • Zhiping Liu
  • Daan Frenkel
  • Jure Dobnikar
  • Xianren Zhang
Open Access
Regular Article


The process of homogeneous bubble nucleation is almost impossible to probe experimentally, except near the critical point or for liquids under large negative tension. Elsewhere in the phase diagram, the bubble nucleation barrier is so high as to be effectively insurmountable. Consequently, there is a severe lack of experimental studies of homogenous bubble nucleation under conditions of practical importance (e.g., cavitation). Here we use a simple geometric relation to show that we can obtain information about the homogeneous nucleation process from Molecular Dynamics studies of bubble formation in solvophobic nanopores on a solid surface. The free energy of pinned nanobubbles has two extrema as a function of volume: one state corresponds to a free-energy maximum (“the critical nucleus”), the other corresponds to a free-energy minimum (the metastable, pinned nanobubble). Provided that the surface tension does not depend on nanobubble curvature, the radius of the curvature of the metastable surface nanobubble is independent of the radius of the pore and is equal to the radius of the critical nucleus in homogenous bubble nucleation. This observation opens the way to probe the parameters that determine homogeneous bubble nucleation under experimentally accessible conditions, e.g. with AFM studies of metastable nanobubbles. Our theoretical analysis also indicates that a surface with pores of different sizes can be used to determine the curvature corrections to the surface tension. Our conclusions are not limited to bubble nucleation but suggest that a similar approach could be used to probe the structure of critical nuclei in crystal nucleation.

Graphical abstract


Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

Supplementary material

10189_2017_11604_MOESM1_ESM.pdf (1.2 mb)
Supplementary material


  1. 1.
    M. Blander, J.L. Katz, AIChE J. 21, 833 (1975)CrossRefGoogle Scholar
  2. 2.
    E. Herbert, S. Balibar, F. Caupin, Phys. Rev. E 74, 041603 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    J.L. Parker, P.M. Claesson, P. Attard, J. Phys. Chem. 98, 8468 (1994)CrossRefGoogle Scholar
  4. 4.
    S.-T. Lou, Z.-Q. Ouyang, Y. Zhang, X.-J. Li, J. Hu, M.-Q. Li, F.-J. Yang, J. Vac. Sci. Technol. B 18, 2573 (2000)CrossRefGoogle Scholar
  5. 5.
    N. Ishida, T. Inoue, M. Miyahara, K. Higashitani, Langmuir 16, 6377 (2000)CrossRefGoogle Scholar
  6. 6.
    R. Steitz, T. Gutberlet, T. Hauss, B. Klösgen, R. Krastev, S. Schemmel, A.C. Simonsen, G.H. Findenegg, Langmuir 19, 2409 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Karpitschka, E. Dietrich, J.R. Seddon, H.J. Zandvliet, D. Lohse, H. Riegler, Phys. Rev. Lett. 109, 066102 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    C.U. Chan, C.-D. Ohl, Phys. Rev. Lett. 109, 174501 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Liu, X. Zhang, J. Chem. Phys. 138, 014706 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    X. Zhang, D.Y. Chan, D. Wang, N. Maeda, Langmuir 29, 1017 (2013)CrossRefGoogle Scholar
  11. 11.
    D. Lohse, X. Zhang, Phys. Rev. E 91, 031003 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    B.J. Block, S.K. Das, M. Oettel, P. Virnau, K. Binder, J. Chem. Phys. 133, 154702 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Corti, K.J. Kerr, K. Torabi, J. Chem. Phys. 135, 024701 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    R. Becker, W. Döring, Ann. Phys. 416, 719 (1935)CrossRefGoogle Scholar
  15. 15.
    I.A.I.i. Frenkel', Kinetic Theory of Liquids (Dover Publications, 1955)Google Scholar
  16. 16.
    P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, 1996)Google Scholar
  17. 17.
    K.K. Tanaka, H. Tanaka, R. Angelil, J. Diemand, Phys. Rev. E 92, 022401 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    C.F. Delale, J. Hruby, F. Marsik, J. Chem. Phys. 118, 792 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    K.S. Glavatskiy, D. Reguera, D. Bedeaux, J. Chem. Phys. 138, 204708 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    X.H. Zhang, A. Khan, W.A. Ducker, Phys. Rev. Lett. 98, 136101 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    X.H. Zhang, X. Zhang, J. Sun, Z. Zhang, G. Li, H. Fang, X. Xiao, X. Zeng, J. Hu, Langmuir 23, 1778 (2007)CrossRefGoogle Scholar
  23. 23.
    S.R. German, X. Wu, H. An, V.S. Craig, T.L. Mega, X. Zhang, ACS Nano 8, 6193 (2014)CrossRefGoogle Scholar
  24. 24.
    V.S.J. Craig, Soft Matter 7, 40 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    J.K. Johnson, J.A. Zollweg, K.E. Gubbins, Mol. Phys. 78, 591 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    M. Matsumoto, K. Tanaka, Fluid Dyn. Res. 40, 54 (2008)CrossRefGoogle Scholar
  27. 27.
    E. Salomons, M. Mareschal, J. Phys.: Condens. Matter. 3, 3645 (1991)ADSGoogle Scholar
  28. 28.
    G. Menzl, M.A. Gonzalez, P. Geiger, F. Caupin, J.L.F. Abascal, C. Valeriani, C. Dellago, Proc. Natl. Acad. Sci. U.S.A. 113, 13582 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    A. Ghoufi, P. Malfreyt, J. Chem. Phys. 146, 084703 (2017)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Qianxiang Xiao
    • 1
  • Yawei Liu
    • 1
  • Zhenjiang Guo
    • 1
  • Zhiping Liu
    • 1
  • Daan Frenkel
    • 2
  • Jure Dobnikar
    • 3
  • Xianren Zhang
    • 1
  1. 1.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of ChemistryUniversity of CambridgeCambridgeUK
  3. 3.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations