Lattice Boltzmann study of chemically-driven self-propelled droplets

Regular Article
Part of the following topical collections:
  1. Fluids and Structures: Multi-scale coupling and modeling


We numerically study the behavior of self-propelled liquid droplets whose motion is triggered by a Marangoni-like flow. This latter is generated by variations of surfactant concentration which affect the droplet surface tension promoting its motion. In the present paper a model for droplets with a third amphiphilic component is adopted. The dynamics is described by Navier-Stokes and convection-diffusion equations, solved by the lattice Boltzmann method coupled with finite-difference schemes. We focus on two cases. First, the study of self-propulsion of an isolated droplet is carried on and, then, the interaction of two self-propelled droplets is investigated. In both cases, when the surfactant migrates towards the interface, a quadrupolar vortex of the velocity field forms inside the droplet and causes the motion. A weaker dipolar field emerges instead when the surfactant is mainly diluted in the bulk. The dynamics of two interacting droplets is more complex and strongly depends on their reciprocal distance. If, in a head-on collision, droplets are close enough, the velocity field initially attracts them until a motionless steady state is achieved. If the droplets are vertically shifted, the hydrodynamic field leads to an initial reciprocal attraction followed by a scattering along opposite directions. This hydrodynamic interaction acts on a separation of some droplet radii otherwise it becomes negligible and droplets motion is only driven by the Marangoni effect. Finally, if one of the droplets is passive, this latter is generally advected by the fluid flow generated by the active one.

Graphical abstract


Topical issue: Fluids and Structures: Multi-scale coupling and modeling 


  1. 1.
    R. Seemann, J.-B. Fleury, C.C. Maass, Eur. Phys. J. ST 225, 2227 (2016)CrossRefGoogle Scholar
  2. 2.
    C. Maas, C. Kruger, S. Herminghaus, C. Bahr, Annu. Rev. Condens. Matter Phys. 7, 171 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    H. Tanaka, T. Araki, Phys. Rev. Lett. 81, 389 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    P. Poesio, G. Beretta, T. Thorsen, Phys. Rev. Lett. 103, 064501 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    T. Ban, T. Yamada, A. Aoyama, Y. Takagi, Y. Okano, Soft Matter 8, 3908 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J. Zhang, Y. Yao, L. Sheng, J. Liu, Adv. Mater. 27, 2648 (2015)CrossRefGoogle Scholar
  8. 8.
    J.D. Murray, Mathematical Biology (Springer-Verlag, New York, 1989)Google Scholar
  9. 9.
    K.I. Agladze, V.I. Krinsky, A.M. Pertsov, Nature 308, 834 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    R. Phillips, J. Kondev, J.A. Theriot, Physical Biology of the Cells (Garland Science, New York, 2008)Google Scholar
  11. 11.
    E. Tjhung, D. Marenduzzo, M. Cates, Proc. Natl. Acad. Sci. U.S.A. 109, 1238 (2012)CrossRefGoogle Scholar
  12. 12.
    E. Tjhung, M. Cates, D. Marenduzzo, Proc. Natl. Acad. Sci. U.S.A. 114, 4631 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Lighthill, Commun. Pure Appl. Math. 109, 118 (1952)Google Scholar
  14. 14.
    M.J. Lighthill, Mathematical Biofluiddynamics, CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics, USA, 1987)Google Scholar
  15. 15.
    J.R. Blake, J. Fluid Mech. 46, 199 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    K.M. Ehlers, D. Samuel, H.C. Berg, R. Montgomery, Proc. Natl. Acad. Sci. U.S.A. 93, 8340 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    K. Drescher, K.C. Leptos, I. Tuval, T. Ishikawa, T.J. Pedley, R.E. Goldstein, Phys. Rev. Lett. 102, 168101 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 073021 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    R.F. Probstein, Physicochemical Hydrodynamics: An Introduction (John Wiley and Sons, 1994)Google Scholar
  20. 20.
    A.A. Nepomnyashchy, M.G. Velarde, P. Colinet, Interfacial Phenomena and Convection (Chapman and Hall/CRC, 2002)Google Scholar
  21. 21.
    V.G. Levich, V.S. Krylov, Annu. Rev. Fluid Mech. 1, 293 (1969)ADSCrossRefGoogle Scholar
  22. 22.
    J.L. Anderson, Annu. Rev. Fluid. Mech 21, 69 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    Yu.S. Ryazantsev, Fluid Dyn. 20, 491 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Izri, M.N. van der Linden, S. Michelin, O. Dauchot, Phys. Rev. Lett. 113, 238302 (2014)CrossRefGoogle Scholar
  25. 25.
    T. Toyota, N. Maru, M.M. Hanczyc, T. Ikegami, T. Sugawara, J. Am. Chem. Soc. 121, 5012 (2009)CrossRefGoogle Scholar
  26. 26.
    H. Kitahata, N. Yoshinaga, K.H. Nagai, Y. Sumino, Phys. Rev. E 84, 015101 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    K. Nagai, Y. Sumino, H. Kitahata, K. Yoshikawa, Phys. Rev. E 71, 065301 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Chen, Y. Nagamine, K. Yoshikawa, Phys. Rev. E 80, 016303 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Sumino, N. Magome, T. Hamada, K. Yoshikawa, Phys. Rev. Lett. 94, 068301 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    M. Schmitt, H. Stark, Eur. Phys. J. E 39, 80 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    A. Zottl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)ADSGoogle Scholar
  32. 32.
    M. Schmitt, H. Stark, Phys. Fluids 28, 012106 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    S. Yabunaka, T. Otha, N. Yoshinaga, J. Chem. Phys. 136, 074904 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S. Yabunaka, N. Yoshinaga, J. Fluid Mech. 806, 205 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    N. Yoshinaga, Phys. Rev. E 89, 012913 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    N. Yoshinaga, K. Nagai, Y. Sumino, H. Kitahata, Phys. Rev. E 86, 016108 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    J. Bray, Adv. Phys. 43, 357 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    A. Tiribocchi, N. Stella, G. Gonnella, A. Lamura, Phys. Rev. E 80, 026701 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    G. Gonnella, A. Lamura, A. Piscitelli, A. Tiribocchi, Phys. Rev. E 82, 046302 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 046308 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    G. Kahler, F. Bonelli, G. Gonnella, A. Lamura, Phys. Fluids 27, 123307 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    A. Coclite, G. Gonnella, A. Lamura, Phys. Rev. E 89, 063303 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    A. Lamura, G. Gonnella, J.M. Yeomans, Europhys. Lett. 45, 314 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    A. Lamura, G. Gonnella, J.M. Yeomans, Int. J. Mod. Phys. C 9, 1469 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    T. Ishikawa, J. R. Soc. Interface 6, 815 (2009)CrossRefGoogle Scholar
  46. 46.
    A.A. Evans, T. Ishikawa, T. Yamaguchi, E. Lauga, Phys. Fluids 23, 111702 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    M.T. Downton, H. Stark, J. Phys.: Condens. Matter 21, 204101 (2009)ADSGoogle Scholar
  48. 48.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    I. Goetze, G. Gompper, Phys. Rev. E 82, 041921 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • F. Fadda
    • 1
  • G. Gonnella
    • 1
  • A. Lamura
    • 2
  • A. Tiribocchi
    • 3
  1. 1.Dipartimento di Fisica and Sezione INFN BariBariItaly
  2. 2.Istituto Applicazioni CalcoloCNRBariItaly
  3. 3.Dipartimento di Fisica e AstronomiaPadovaItaly

Personalised recommendations