Rheotropism of the dowser texture

  • Pawel Pieranski
  • Jean-Pierre Hulin
  • Maria Helena Godinho
Regular Article


In spite of its metastability, the pseudo-planar texture of a nematic layer confined between surfaces with homeotropic anchoring can be preserved indefinitely in certain conditions. The pseudo-planar texture, dubbed “the dowser texture”, is degenerated and therefore sensitive to perturbations. It has been shown recently that the dowser texture is cuneitropic, that is to say, has a tendency to follow thickness gradients. Here, we point out that the dowser texture is also rheotropic or, in other words, has a weathercock behavior: it tends to follow the direction of Poiseuille flows. We observed this behavior in two experiments. In the first one it appears as a deformation of a wound up dowser texture submitted to a slowly alternating linear Poiseuille flow. In the second one we study rheotropic effects of elliptical flow patterns generated by modulation of the gap thickness in a system made of a rigid lens and a flexible glass slide. We show that such elliptical flows can wind the dowser texture and therefore can be used in studies of generation and annihilation of nematic monopoles.

Graphical abstract


Soft Matter: Liquid crystals 


  1. 1.
    J.M. Gilli, S. Thiberge, A. Vierheilig, F. Fried, Liq. Cryst. 23, 619 (1997)CrossRefGoogle Scholar
  2. 2.
    P. Pieranski, M.H. Godinho, S. Čopar, Phys. Rev. E 94, 042706 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    D.Y.C. Chan, R.G. Horn, J. Chem. Phys. 83, 5311 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    P. Pieranski, Reflets Phys. 53, 6 (2017)CrossRefGoogle Scholar
  5. 5.
    P. Pieranski, S. Čopar, M.H. Godinho, M. Dazza, Eur. Phys. J. E 39, 121 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Giomia, Z. Kosb, M. Ravnik, A. Sengupta, Proc. Natl. Acad. Sci. U.S.A. 114, E5771 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    P.E. Cladis, Y. Couder, H.R. Brand, Phys. Rev. Lett. 55, 2945 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    P.E. Cladis, P.L. Finn, H.R. Brand, Phys. Rev. Lett. 75, 1518 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    C. Chevallard, J.-M. Gilli, T. Frisch, I.V. Chikina, P. Pieranski, Mol. Cryst. Liq. Cryst. 328, 589 (1999)CrossRefGoogle Scholar
  10. 10.
    P. Pieranski, Eur. Phys. J. E 37, 24 (2014)CrossRefGoogle Scholar
  11. 11.
    O.D. Lavrentovich, S.S. Rozhkov, JETP Lett. 47, 255 (1988)ADSGoogle Scholar
  12. 12.
    P.W. Anderson, A.H. Dayem, Phys. Rev. Lett. 13, 195 (1964)ADSCrossRefGoogle Scholar
  13. 13.
    P.W. Anderson, Rev. Mod. Phys. 38, 298 (1966)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Pawel Pieranski
    • 1
  • Jean-Pierre Hulin
    • 2
  • Maria Helena Godinho
    • 3
  1. 1.Laboratoire de Physique des SolidesUniversité Paris-SudOrsayFrance
  2. 2.FASTUniversité Paris-SudOrsayFrance
  3. 3.CENIMAT, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations