Effect of solute immobilization on the stability problem within the fractional model in the solute analog of the Horton-Rogers-Lapwood problem

  • Lyudmila S. KlimenkoEmail author
  • Boris S. Maryshev
Regular Article
Part of the following topical collections:
  1. Non-equilibrium processes in multicomponent and multiphase media


The paper is devoted to the linear stability analysis within the solute analogue of the Horton-Rogers-Lapwood (HRL) problem. The solid nanoparticles are treated as solute within the continuous approach. Therefore, we consider the infinite horizontal porous layer saturated with a mixture (carrier fluid and solute). Solute transport in porous media is very often complicated by solute immobilization on a solid matrix of porous media. Solute immobilization (solute sorption) is taken into account within the fractal model of the MIM approach. According to this model a solute in porous media immobilizes within random time intervals and the distribution of such random variable does not have a finite mean value, which has a good agreement with some experiments. The solute concentration difference between the layer boundaries is assumed as constant. We consider two cases of horizontal external filtration flux: constant and time-modulated. For the constant flux the system of equations that determines the frequency of neutral oscillations and the critical value of the Rayleigh-Darcy number is derived. Neutral curves of the critical parameters on the governing parameters are plotted. Stability maps are obtained numerically in a wide range of parameters of the system. We have found that taking immobilization into account leads to an increase in the critical value of the Rayleigh-Darcy number with an increase in the intensity of the external filtration flux. The case of weak time-dependent external flux is investigated analytically. We have shown that the modulated external flux leads to an increase in the critical value of the Rayleigh-Darcy number and a decrease in the critical wave number. For moderate time-dependent filtration flux the differential equation with Caputo fractional derivatives has been obtained for the description of the behavior near the convection instability threshold. This equation is analyzed numerically by the Floquet method; the parametric excitation of convection is observed.

Graphical abstract


Topical issue: Non-equilibrium processes in multicomponent and multiphase media 


  1. 1.
    D.A. Nield, A. Bejan, Convection in Porous Media, Vol. 3 (Springer, 2006)Google Scholar
  2. 2.
    B. Kay, D. Elrick, Soil Sci. 104, 314 (1967)CrossRefGoogle Scholar
  3. 3.
    P. Gouze, T. Le Borgne, R. Leprovost, G. Lods, T. Poidras, P. Pezard, Water Resour. Res. 44, W06426 (2008)ADSGoogle Scholar
  4. 4.
    M. Levy, B. Berkowitz, J. Contam. Hydrol. 64, 203 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    B.S. Maryshev, T.P. Lyubimova, Eur. Phys. J. E 39, 66 (2016)CrossRefGoogle Scholar
  6. 6.
    D.S. Goldobin, N. Brilliantov, J. Levesley, M. Lovell, C. Rochelle, P. Jackson, A. Haywood, S. Hunter, J. Rees, Eur. Phys. J. E 37, 45 (2014)CrossRefGoogle Scholar
  7. 7.
    M.T. Van Genuchten, P. Wierenga, Soil Sci. Soc. Am. J. 40, 473 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    H. Deans et al., Soc. Pet. Eng. J. 3, 49 (1963)CrossRefGoogle Scholar
  9. 9.
    F.T. Lindstrom, R. Haque, V.H. Freed, L. Boersma, Environ. Sci. Technol. 1, 561 (1967)ADSCrossRefGoogle Scholar
  10. 10.
    D. Nielsen, J. Biggar, Soil Sci. Soc. Am. J. 25, 1 (1961)ADSCrossRefGoogle Scholar
  11. 11.
    M. Bromly, C. Hinz, Water Resour. Res. 40, W07402 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer, Water Resour. Res. 39, 1296 (2003)ADSGoogle Scholar
  13. 13.
    B. Maryshev, A. Cartalade, C. Latrille, M.C. Néel, Transp. Porous Media 116, 53 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    B. Maryshev, Math. Model. Nat. Phenom. 11, 179 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Horton, F. Rogers jr., J. Appl. Phys. 16, 367 (1945)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Prats, J. Geophys. Res. 71, 4835 (1966)ADSCrossRefGoogle Scholar
  17. 17.
    B.S. Maryshev, Transp. Porous Media 109, 747 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    V. Gafiychuk, B. Datsko, Phys. Lett. A 372, 4902 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    V. Gafiychuk, B. Datsko, V. Meleshko, Physica A: Stat. Mech. Appl. 387, 418 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    V. Gafiychuk, B. Datsko, Phys. Rev. E 75, 055201 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    V. Gafiychuk, B. Datsko, Appl. Math. Comput. 198, 251 (2008)MathSciNetGoogle Scholar
  22. 22.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    A.H. Nayfeh, Perturbation Methods (John Wiley & Sons, 2008)Google Scholar
  24. 24.
    D. Lyubimov, V. Teplov, Hydrodynamics, edited by G.Z. Gershuni, D.V. Lyubimov, T.P. Lyubimova, G.F. Putin, Vol. 11 (Perm State University, Perm, 1998) p. 176Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Continuous Media MechanicsUral Branch of Russian Academy of SciencePermRussia
  2. 2.Perm State UniversityPermRussia

Personalised recommendations