Investigating the origin of acoustic attenuation in liquid foams

  • Juliette Pierre
  • Camille Gaulon
  • Caroline Derec
  • Florence Elias
  • Valentin Leroy
Regular Article


Liquid foams are known to be highly efficient to absorb acoustic waves but the origin of the sound dissipation remains unknown. In this paper, we present low frequency (0.5-4kHz) experimental results measured with an impedance tube and we confront the recorded attenuations with a simple model that considers the foam as a concentrate bubbly liquid. In order to identify the influence of the different parameters constituting the foams we probe samples with different gases, and various liquid fractions and bubble size distributions. We demonstrate that the intrinsic acoustic attenuation in the liquid foam is due to both thermal and viscous losses. The physical mechanism of the viscous term is not elucidated but the microscopic effective viscosity evidenced here can be described by a phenomenological law scaling with the bubble size and the gas density. In our experimental configuration a third dissipation term occurs. It comes from the viscous friction on the wall of the impedance tube and it is well described by the Kirchhoff law considering the macroscopic effective viscosity classically measured in rheology experiments.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 


  1. 1.
    Juliette Pierre, Benjamin Dollet, Valentin Leroy, Phys. Rev. Lett. 112, 148307 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Albert Beaumont Wood, A Text Book of Sound (G. Bell and Sons, London, 1941). Google Scholar
  3. 3.
    K.B. Kann, Colloids Surf. A: Physicochem. Eng. Asp. 263, 315 (2005)CrossRefGoogle Scholar
  4. 4.
    Richard Raspet, S.K. Griffiths, J. Acoust. Soc. Am. 74, 1757 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    Nicolá, Phys. Rev. E 66, 021404 (2002)CrossRefGoogle Scholar
  6. 6.
    Martin Monloubou, Arnaud Saint-Jalmes, Benjamin Dollet, Isabelle Cantat, EPL 112, 34001 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    I. Goldfarb, Z. Orenbakh, I. Shreiber, F. Vafina, Shock Waves 7, 77 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Juliette Pierre, Reine-Marie Guillermic, Florence Elias, Valentin Leroy, Eur. Phys. J. E 36, 113 (2013)CrossRefGoogle Scholar
  9. 9.
    I.I. Goldfarb, Z.M. Orenbakh, G.A. Shushkov, I.R. Shreiber, F.I. Vafina, J. Phys. IV 2, C1-891 (1992)Google Scholar
  10. 10.
    T. Gaillard, M. Roché, C. Honorez, M. Jumeau, A. Balan, C. Jedrzejczyk, W. Drenckhan, Controlled foam generation using cyclic diphasic flows through a constriction, to be published in Int. J. Multiphase Flow (2017)Google Scholar
  11. 11.
    Thibaut Gaillard, Clé, Colloids Surf. A: Physicochem. Eng. Asp. 473, 68 (2015)CrossRefGoogle Scholar
  12. 12.
    I.I. Goldfarb, I.R. Schreiber, F.I. Vafina, J. Acoust. Soc. Am. 92, 2756 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    Imen Ben Salem, Reine-Marie Guillermic, Caitlin Sample, Valentin Leroy, Arnaud Saint-Jalmes, Benjamin Dollet, Soft Matter 9, 1194 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Andrea Prosperetti, J. Acoust. Soc. Am. 56, 878 (1974)CrossRefGoogle Scholar
  15. 15.
    Isabelle Cantat, Sylvie Cohen-Addad, Florence Elias, François Graner, Reinhard Höhler, Olivier Pitois, Florence Rouyer, Arnaud Saint-Jalmes, Foams: Structure and Dynamics (Oxford University Press, 2013)Google Scholar
  16. 16.
    Sé, Soft Matter 9, 1100 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Gustav Kirchhoff, Ann. Phys. 210, 177 (1868)CrossRefGoogle Scholar
  18. 18.
    D.E. Weston, Proc. Phys. Soc. B 66, 695 (1953)ADSCrossRefGoogle Scholar
  19. 19.
    Marion Erpelding, Reine-Marie Guillermic, Benjamin Dollet, Arnaud Saint-Jalmes, Jé, Phys. Rev. E 82, 021409 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Fré, Phys. Rev. E 89, 012308 (2014)ADSGoogle Scholar
  21. 21.
    Alexander L. Lindsay, LeRoy A. Bromley, Ind. Eng. Chem. 42, 1508 (1950)CrossRefGoogle Scholar
  22. 22.
    H.M. Princen, J. Colloid Interface Sci. 105, 150 (1985)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Juliette Pierre
    • 1
  • Camille Gaulon
    • 2
  • Caroline Derec
    • 2
  • Florence Elias
    • 2
    • 3
  • Valentin Leroy
    • 2
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, CNRS (UMR 7190), Institut Jean Le Rond d’AlembertParisFrance
  2. 2.Laboratoire Matière et Systèmes ComplexesUniversité Paris-Diderot, Sorbonne Paris Cité, CNRS (UMR 7057)ParisFrance
  3. 3.Sorbonne Universités, UPMC Univ Paris 06, CNRS (UMR 7057), Laboratoire Matière et Systèmes ComplexesParisFrance

Personalised recommendations