Effects of stimulated aggrecanolysis on nanoscale morphological and mechanical properties of wild-type and aggrecanase-resistant mutant mice cartilages

  • Md. Hemayet Uddin
  • Huabin Wang
  • Fraser M. Rogerson
  • Peter Vee-Sin Lee
  • Xuehua Zhang
Regular Article


A key event in arthritis pathogenesis is the degradation of aggrecan, the major component in articular cartilage. In this work, we investigate the effects of stimulated aggrecanolysis on the morphological and nanomechanical properties of cartilage harvested from wild-type mice and aggrecanase-resistant mutant mice named “Jaffa”. The cartilages were native or were subjected to stimulated aggrecanolysis by interleukin-1\(\alpha\) (IL-1\(\alpha\)) treatment. The nanoscale morphological and mechanical properties of the sectioned cartilages were measured by using a sharp probe by atomic force microscopy (AFM). The IL-1\(\alpha\) treatment resulted in a higher nanoroughess and stiffness of the cartilage from wild-type mice. However, the same treatment did not lead to any measurable change in the nanoroughness or stiffness of the cartilage from mutant mice Jaffa. This suggests that blocking aggrecanolysis by genetic modification has created the stability in the structures and mechanical properties of the cartilage at nanoscale. The present study provides insight into the mechanism of aggrecan degradation, which can complement the examination by biochemical and histological techniques.

Graphical abstract


Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

Supplementary material

10189_2017_430_MOESM1_ESM.pdf (489 kb)
Supplementary material


  1. 1.
    H. Hedlund, E. Hedbom, D. Heinegard, S. Mengarelli-Widholm, F.P. Reinholt, O. Svensson, J. Biol. Chem. 274, 5777 (1999)CrossRefGoogle Scholar
  2. 2.
    P.J. Roughley, Eur. Cells Mater. 12, 92 (2006)CrossRefGoogle Scholar
  3. 3.
    L.D. Kozaci, D.J. Buttle, A.P. Hollander, Arthritis Rheum. 40, 164 (1997)CrossRefGoogle Scholar
  4. 4.
    H. Stanton, S.B. Golub, F.M. Rogerson, K. Last, C.B. Little, A.J. Fosang, Nat. Protoc. 6, 388 (2011)CrossRefGoogle Scholar
  5. 5.
    C.B. Little, C.T. Meeker, S.B. Golub, K.E. Lawlor, P.J. Farmer, S.M. Smith, A.J. Fosang, J. Clin. Invest. 117, 1627 (2007)CrossRefGoogle Scholar
  6. 6.
    M.A. Pratta, W. Yao, C. Decicco, M.D. Tortorella, R.-Q. Liu, R.A. Copeland, R. Magolda, R.C. Newton, J.M. Trzaskos, E.C. Arner, J. Biol. Chem. 278, 45539 (2003)CrossRefGoogle Scholar
  7. 7.
    H.T. Nia, L. Han, Y. Li, C. Ortiz, A. Grodzinsky, Biophys. J. 101, 2304 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    H.T. Nia, I.S. Bozchalooi, Y. Li, L. Han, H.H. Hung, E. Frank, K. Youcef-Toumi, C. Ortiz, A. Grodzinsky, Biophys. J. 104, 1529 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    H.T. Nia, S.J. Gauci, M. Azadi, H.H. Hung, E. Frank, A.J. Fosang, C. Ortiz, A.J. Grodzinsky, J. Biomech. 48, 162 (2015)CrossRefGoogle Scholar
  10. 10.
    H.B. Wang, J.J. Wilksch, T. Lithgow, R.A. Strugnell, M.L. Gee, Soft Matter 9, 7560 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    H.B. Wang, J.J. Wilksch, R.A. Strugnell, M.L. Gee, ACS Appl. Mater. Interfaces 7, 13007 (2015)CrossRefGoogle Scholar
  12. 12.
    B. Lee, L. Han, E.H. Frank, S. Chubinskaya, C. Ortiz, A.J. Grodzinsky, J. Biomech. 43, 469 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Stolz, R. Raiteri, A.U. Daniels, M.R. VanLandingham, W. Baschong, U. Aebi, Biophys. J. 86, 3269 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    E.C. Spitzner, S. Roper, M. Zerson, A. Bernstein, R. Magerle, ACS Nano 9, 5683 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin, R. Imer, U. Staufer, A. Raducanu, M. Duggelin, W. Baschong et al., Nat. Nanotechnol. 4, 186 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J.L. Hutter, Bechhoefer, J. Rev. Sci. Instrum. 64, 1868 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    S. Park, K.D. Costa, G.A. Ateshian, K.S. Hong, Proc. Inst. Mech. Eng. H 223, 339 (2009)CrossRefGoogle Scholar
  18. 18.
    G.G. Bilodeau, J. Appl. Mech. 59, 519 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Rosenbluth, W.A. Lam, D.A. Fletcher, Biophys. J. 90, 2994 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    M. Loparic, D. Wirz, A.U. Daniels, R. Raiteri, M.R. VanLandingham, G. Guex, I. Martin, U. Aebi, M. Stolz, Biophys. J. 98, 2731 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Md. Hemayet Uddin
    • 1
  • Huabin Wang
    • 2
  • Fraser M. Rogerson
    • 3
    • 4
  • Peter Vee-Sin Lee
    • 5
  • Xuehua Zhang
    • 6
  1. 1.Melbourne Central of NanofabricationVictorian Node of Australian National Fabrication FacilityClaytonAustralia
  2. 2.Chongqing Key Laboratory of Multi-Scale Manufacturing TechnologyChongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina
  3. 3.Department of PaediatricsUniversity of MelbourneParkvilleAustralia
  4. 4.Murdoch Childrens Research InstituteRoyal Children’s HospitalParkvilleAustralia
  5. 5.Department of Mechanical EngineeringUniversity of MelbourneParkvilleAustralia
  6. 6.Soft Matter and Interfaces GroupSchool of Engineering, RMIT UniversityMelbourneAustralia

Personalised recommendations