Shear-induced slab-like domains in a directed percolated colloidal gel

Regular Article
  • 26 Downloads

Abstract.

We explore the structural changes of a gel-forming colloid polymer mixture under shear by employing Brownian dynamics simulations of a colloidal system with short-ranged attractive depletion interaction in a linear flow profile. While the structure of unpercolated systems changes only slightly under shearing, we discover the formation of slab-like clusters in sheared directed percolated gel networks that are confined between two walls. These gel-slabs are stable over a long time and seem to be related to the syneresis phenomena that can be observed in directed percolated colloidal gels. Only at large shear strength the slabs are destroyed and a homogeneous state with many unbounded particles can be observed. We also quantitatively analyze our results by determining void volumes.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    T. Eckert, E. Bartsch, Phys. Rev. Lett. 89, 125701 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    V. Trappe, P. Sandkühler, Curr. Opin. Colloid Interface Sci. 8, 494 (2004)CrossRefGoogle Scholar
  3. 3.
    A. de Candia, E. del Gado, A. Fierro, N. Sator, A. Coniglio, Physica A: Stat. Mech. Appl. 358, 239 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    A.D. Dinsmore, V. Prasad, I.Y. Wong, D.A. Weitz, Phys. Rev. Lett. 96, 185502 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    C.J. Dibble, M. Kogan, M.J. Solomon, Phys. Rev. E 74, 041403 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    E. Zaccarelli, J. Phys.: Condens. Matter 19, 323101 (2007)Google Scholar
  7. 7.
    C.J. Dibble, M. Kogan, M.J. Solomon, Phys. Rev. E 77, 050401 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    P.J. Lu, E. Zaccarelli, F. Ciulla, A.B. Schofield, F. Sciortino, D.A. Weitz, Nature 453, 499 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J. Zhang, W. Klingsch, A. Schadschneider, A. Seyfried, J. Stat. Mech. 2012, P02002 (2012)Google Scholar
  10. 10.
    M. Kohl, R. Capellmann, M. Laurati, S. Egelhaaf, M. Schmiedeberg, Nat. Commun. 7, 11817 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    R.F. Capellmann, N.E. Valadez-Perez, B. Simon, S.U. Egelhaaf, M. Laurati, R. Castaneda-Priego, Soft Matter 12, 9303 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    M.Y. Lin, H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein, P. Meakin, Nature 339, 360 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    W. Götze, L. Sjögren, Rep. Progr. Phys. 55, 241 (1992)CrossRefGoogle Scholar
  14. 14.
    L. Santen, W. Krauth, Nature 405, 550 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    L. Cipelletti, S. Manley, R.C. Ball, D.A. Weitz, Phys. Rev. Lett. 84, 2275 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    P.N. Segré, V. Prasad, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 86, 6042 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    H. Tanaka, J. Meunier, D. Bonn, Phys. Rev. E 69, 031404 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    H. Sedgwick, S.U. Egelhaaf, W.C.K. Poon, J. Phys.: Condens. Matter 16, S4913 (2004)ADSGoogle Scholar
  19. 19.
    H. Sedgwick, K. Kroy, A. Salonen, M.B. Robertson, S.U. Egelhaaf, W.C.K. Poon, Eur. Phys. J. E 16, 77 (2005)CrossRefGoogle Scholar
  20. 20.
    P.C. Royall, S.R. Williams, T. Ohtsuka, H. Tanaka, Nat. Mater. 7, 556 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    N. Khalil, A. de Candia, A. Fierro, M.P. Ciamarra, A. Coniglio, Soft Matter 10, 4800 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    C.P. Royall, S.R. Williams, Phys. Rep. 560, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Colombo, E. Del Gado, J. Rheol. 58, 1089 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    A.H.L. West, J.R. Melrose, R.C. Ball, Phys. Rev. E 49, 4237 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    J. Kim, D. Merger, M. Wilhelm, M.E. Helgeson, J. Rheol. 58, 1359 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Park, K.H. Ahn, S.J. Lee, Soft Matter 11, 9262 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    L. Bécu, S. Manneville, A. Colin, Phys. Rev. Lett. 96, 138302 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    P.C.F. Moller, S. Rodts, M.A.J. Michels, D. Bonn, Phys. Rev. E 77, 041507 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    S.M. Fielding, Rep. Prog. Phys. 77, 102601 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    A.P.R. Eberle, N. Martys, L. Porcar, S.R. Kline, W.L. George, J.M. Kim, P.D. Butler, N.J. Wagner, Phys. Rev. E 89, 050302 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    R. Wessel, R.C. Ball, Phys. Rev. A 46, R3008 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    M. Laurati, G. Petekidis, N. Koumakis, F. Cardinaux, A.B. Schofield, J.M. Brader, M. Fuchs, S.U. Egelhaaf, J. Chem. Phys. 130, 134907 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    B.J. Landrum, W.B. Russel, R.N. Zia, J. Rheol. 60, 783 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    P. Smith, G. Petekidis, S. Egelhaaf, W. Poon, Phys. Rev. E 76, 041402 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    J. Kim, M.E. Helgeson, Phys. Rev. Fluids 1, 043302 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    N. Koumakis, E. Moghimi, R. Besseling, W.C.K. Poon, J.F. Brady, G. Petekidis, Soft Matter 11, 4640 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    E. Zaccarelli, P.J. Lu, F. Ciulla, D.A. Weitz, F. Sciortino, J. Phys.: Condens. Matter 20, 494242 (2008)Google Scholar
  38. 38.
    M.A. Miller, D. Frenkel, Phys. Rev. Lett. 90, 135702 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    A.J. Archer, N.B. Wilding, Phys. Rev. E 76, 031501 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    M. Kunitz, J. Gen. Physiol. 12, 289 (1928)CrossRefGoogle Scholar
  41. 41.
    T. Matsuhashi, in Food Gels, edited by P. Harris (Elsevier Applied Science, London, 1990) Chapt. 1, pp. 1--51Google Scholar
  42. 42.
    S. Manley, J.M. Skotheim, L. Mahadevan, D.A. Weitz, Phys. Rev. Lett. 94, 218302 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    J. Wu, T. Yi, Y. Zou, Q. Xia, T. Shu, F. Liu, Y. Yang, F. Li, Z. Chen, Z. Zhou et al., J. Mater. Chem. 19, 3971 (2009)CrossRefGoogle Scholar
  44. 44.
    T. Gan, Y. Guan, Y. Zhang, J. Mater. Chem. 20, 5937 (2010)CrossRefGoogle Scholar
  45. 45.
    T. Divoux, B. Mao, P. Snabre, Soft Matter 11, 3677 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Z. Varga, G. Wang, J. Swan, Soft Matter 11, 9009 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Z. Varga, J. Swan, Soft Matter 12, 7670 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    H.M. Lindsay, P.M. Chaikin, J. Chem. Phys. 76, 3774 (1982)ADSCrossRefGoogle Scholar
  49. 49.
    C.P. Royall, D.G.A.L. Aarts, H. Tanaka, J. Phys.: Condens. Matter 17, S3401 (2005)ADSGoogle Scholar
  50. 50.
    S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958)ADSCrossRefGoogle Scholar
  51. 51.
    A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. E 67, 031406 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, reprint edition (Oxford University Press, 1989)Google Scholar
  53. 53.
    J. Vermant, M.J. Solomon, J. Phys.: Condens. Matter 17, R187 (2005)ADSGoogle Scholar
  54. 54.
    N. Koumakis, A. Schofield, G. Petekidis, Soft Matter 4, 10 (2008)CrossRefGoogle Scholar
  55. 55.
    M.E. Helgeson, Y. Gao, S.E. Moran, J. Lee, M. Godfrin, A. Tripathi, A. Bose, P.S. Doyle, Soft Matter 10, 3122 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut für Theoretische Physik II: Weiche MaterieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Institut für Theoretische Physik 1Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations