Protocol to perform pressurized blister tests on thin elastic films

  • François Boulogne
  • Sepideh Khodaparast
  • Christophe Poulard
  • Howard A. Stone
Tips and Tricks


This work aims to identify common challenges in the preparation of the blister test devices designed for the measurement of the energy release rate for brittle thin films and to propose easy-to-implement solutions accordingly. To this end, we provide a step-by-step guide for fabricating a blister test device comprised of thin polystyrene films adhered to glass substrates. Thin films are first transferred from donor substrates to an air-water interface, which is then used as a platform to locate them on a receiver substrate. We embed a microchannel at the back of the device to evacuate the air trapped in the opening, through which the pressure is applied. We quantify the height and the radius of the blister to estimate the adhesion energy using the available expressions correlating the normal force and the moment with the shape of the blister. The present blister test provided an adhesion energy per unit area of G = 18±2 mJ/m^2 for polystyrene on glass, which is in good agreement with the measurement of G = 14±2 mJ/m^2 found in our independent cleavage test.

Graphical abstract


Tips and Tricks 

Supplementary material

10189_2017_422_MOESM1_ESM.svg (2 kb)
Supplementary material
10189_2017_422_MOESM2_ESM.pdf (331 kb)
Supplementary material


  1. 1.
    J.W. Obreimoff, Proc. R. Soc. London, Ser. A 127, 290 (1930)ADSCrossRefGoogle Scholar
  2. 2.
    K. Kendall, J. Phys. D: Appl. Phys. 8, 1449 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. London A 324, 301 (1971)ADSCrossRefGoogle Scholar
  4. 4.
    K.R. Shull, D. Ahn, C.L. Mowery, Langmuir 13, 1799 (1997)CrossRefGoogle Scholar
  5. 5.
    K.R. Shull, Mater. Sci. Eng. R: Reports 36, 1 (2002)CrossRefGoogle Scholar
  6. 6.
    E. Barthel, J. Phys. D: Appl. Phys. 41, 163001 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    H. Dannenberg, J. Appl. Polym. Sci. 5, 125 (1961)CrossRefGoogle Scholar
  8. 8.
    Henrik Myhre Jensen, Eng. Fract. Mech. 40, 475 (1991)CrossRefGoogle Scholar
  9. 9.
    H.M. Jensen, Int. J. Fract. 94, 79 (1998)CrossRefGoogle Scholar
  10. 10.
    J.A. Hinkley, J. Adhes. 16, 115 (1983)CrossRefGoogle Scholar
  11. 11.
    B.J. Briscoe, S.S. Panesar, Proc. R. Soc. London A 433, 23 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    J. Sizemore, R.J. Hohlfelder, J.J. Vlassak, W.D. Nix, MRS Proc. 383, 197 (1995)CrossRefGoogle Scholar
  13. 13.
    M. Dupeux, A. Bosseboeuf, Application of the Blister Test to Adhesion Energy Measurements in Metal/Ceramic Film-on-Substrate Systems, (Springer Netherlands, Dordrecht, 1998) pp. 319--327Google Scholar
  14. 14.
    Z. Cao, P. Wang, W. Gao, L. Tao, J.W. Suk, R.S. Ruoff, D. Akinwande, R. Huang, K.M. Liechti, Carbon 69, 390 (2014)CrossRefGoogle Scholar
  15. 15.
    S.P. Koenig, N.G. Boddeti, M.L. Dunn, J.S. Bunch, Nat. Nanotechnol. 6, 543 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    W. Gao, R. Huang, J. Phys. D: Appl. Phys. 44, 452001 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    N.G. Boddeti, S.P. Koenig, R. Long, J. Xiao, J.S. Bunch, J. Appl. Mech. 80, 040909 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    D. Metten, F. Federspiel, M. Romeo, S. Berciaud, Phys. Rev. Appl. 2, 054008 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R. Yahiaoui, K. Danaie, S. Petitgrand, A. Bosseboeuf, Proc. SPIE 4400, 160 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    S. Guo, K. Wan, D.A. Dillard, Int. J. Solids Struct. 42, 2771 (2005)CrossRefGoogle Scholar
  21. 21.
    U. Komaragiri, M.R. Begley, J.G. Simmonds, J. Appl. Mech. 72, 203 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Wang, L. Tong, J. Adhes. 92, 171 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Sofla, E. Seker, M.R. Begley, J.P. Landers, J. Appl. Mech. 77, 031007 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    K.B. Blodgett, I. Langmuir, Phys. Rev. 51, 964 (1937)ADSCrossRefGoogle Scholar
  25. 25.
    R.J. Hohlfelder, H. Luo, J.J. Vlassak, C.E.D. Chidsey, W.D. Nix, MRS Proc. 436, 115 (1997)CrossRefGoogle Scholar
  26. 26.
    J. Brandrup, E.H. Immergut, E.A. Grulke, A. Abe, D.R. Bloch, Polymer Handbook, fourth edition (Wiley, New York, 1989)Google Scholar
  27. 27.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 320 (2004)CrossRefGoogle Scholar
  28. 28.
    C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. VanLandingham, H.-C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, Nat. Mater. 3, 545 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    K. Haubert, T. Drier, D. Beebe, Lab Chip 6, 1548 (2006)CrossRefGoogle Scholar
  31. 31.
    G.G. Roberts, P.S. Vincett, W.A. Barlow, Phys. Technol. 12, 69 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    M.J. Savelski, S.A. Shetty, W.B. Kolb, R.L. Cerro, J. Colloid Interface Sci. 176, 117 (1995)CrossRefGoogle Scholar
  33. 33.
    R.L. Cerro, J. Colloid Interface Sci. 257, 276 (2003)CrossRefGoogle Scholar
  34. 34.
    S. van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, N. Yager, E. Gouillart, T. Yu, PeerJ 2, e453 (2014)CrossRefGoogle Scholar
  35. 35.
    E. Rio, F. Boulogne, Withdrawing a solid of a bath: How much liquid is coated?, to be published in Adv. Colloid Interface Sci. (2017) DOI:10.1016/j.cis.2017.01.006
  36. 36.
    N. Bassou, Y. Rharbi, Langmuir 25, 624 (2009)CrossRefGoogle Scholar
  37. 37.
    K. Kendall, J. Adhes. Sci. Technol. 8, 1271 (1994)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • François Boulogne
    • 1
    • 2
  • Sepideh Khodaparast
    • 1
  • Christophe Poulard
    • 2
  • Howard A. Stone
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Laboratoire de Physique des SolidesCNRS, Univ. Paris-Sud, Université Paris-SaclayOrsayFrance

Personalised recommendations