Advertisement

Hydrodynamic instabilities in active cholesteric liquid crystals

  • Carl A. Whitfield
  • Tapan Chandra Adhyapak
  • Adriano Tiribocchi
  • Gareth P. Alexander
  • Davide Marenduzzo
  • Sriram Ramaswamy
Open Access
Regular Article

Abstract.

We describe the basic properties and consequences of introducing active stresses, with principal direction along the local director, in cholesteric liquid crystals. The helical ground state is found to be linearly unstable to extensile stresses, without threshold in the limit of infinite system size, whereas contractile stresses are hydrodynamically screened by the cholesteric elasticity to give a finite threshold. This is confirmed numerically and the non-linear consequences of instability, in both extensile and contractile cases, are studied. We also consider the stresses associated to defects in the cholesteric pitch (\(\lambda\) lines) and show how the geometry near to the defect generates threshold-less flows reminiscent of those for defects in active nematics. At large extensile activity \(\lambda\) lines are spontaneously created and can form steady-state patterns sustained by constant active flows.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)CrossRefADSGoogle Scholar
  3. 3.
    J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. 318, 170 (2005)CrossRefADSGoogle Scholar
  4. 4.
    C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004)CrossRefADSGoogle Scholar
  5. 5.
    L.H. Cisneros, R. Cortez, C. Dombrowski, R.E. Goldstein, J.O. Kessler, Exp. Mech. 43, 737 (2007)Google Scholar
  6. 6.
    D. Volfson, S. Cookson, J. Hasty, L.S. Tsimring, Proc. Natl. Acad. Sci. U.S.A. 105, 15346 (2008)CrossRefADSGoogle Scholar
  7. 7.
    V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)CrossRefADSGoogle Scholar
  8. 8.
    A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Phys. Rev. Lett. 100, 058001 (2008)CrossRefADSGoogle Scholar
  9. 9.
    K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Eur. Phys. J. E 16, 5 (2005)CrossRefGoogle Scholar
  10. 10.
    J. Prost, F. Jülicher, J.-F. Joanny, Nat. Phys. 11, 111 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)CrossRefADSGoogle Scholar
  12. 12.
    F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi, M.J. Bowick, M.C. Marchetti, Z. Dogic, A.R. Bausch, Science 345, 1135 (2014)CrossRefADSGoogle Scholar
  13. 13.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)CrossRefADSGoogle Scholar
  14. 14.
    M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)CrossRefADSGoogle Scholar
  15. 15.
    L. Giomi, M.C. Marchetti, T.B. Liverpool, Phys. Rev. Lett. 101, 198101 (2008)CrossRefADSGoogle Scholar
  16. 16.
    A. Sokolov, I.S. Aranson, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007)CrossRefADSGoogle Scholar
  17. 17.
    I.S. Aranson, A. Sokolov, J.O. Kessler, R.E. Goldstein, Phys. Rev. E 75, 040901 (2007)CrossRefADSGoogle Scholar
  18. 18.
    T. Brotto, D. Bartolo, D. Saintillan, J. Nonlinear Sci. 25, 1125 (2015)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    T.C. Adhyapak, S. Ramaswamy, J. Toner, Phys. Rev. Lett. 110, 118102 (2013)CrossRefADSGoogle Scholar
  20. 20.
    L. Chen, J. Toner, Phys. Rev. Lett. 111, 088701 (2013)CrossRefADSGoogle Scholar
  21. 21.
    P. Romanczuk, H. Chaté, L. Chen, S. Ngo, J. Toner, New J. Phys. 18, 063015 (2016)CrossRefADSGoogle Scholar
  22. 22.
    M.E. Cates, J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015)CrossRefADSGoogle Scholar
  23. 23.
    J.D. Watson, F.H.C. Crick, Nature 171, 737 (1953)CrossRefADSGoogle Scholar
  24. 24.
    H.C. Berg, R.A. Anderson, Nature 245, 380 (1973)CrossRefADSGoogle Scholar
  25. 25.
    H.C. Berg, Annu. Rev. Biochem. 72, 19 (2003)CrossRefGoogle Scholar
  26. 26.
    M. Srinivasarao, Chem. Rev. 99, 1935 (1999)CrossRefGoogle Scholar
  27. 27.
    S. Kinoshita, S. Yoshioka, ChemPhysChem 6, 1442 (2005)CrossRefGoogle Scholar
  28. 28.
    S. Fürthauer, M. Strempel, S.W. Grill, F. Jülicher, Eur. Phys. J. E 35, 89 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Fürthauer, M. Strempel, S.W. Grill, F. Jülicher, Phys. Rev. Lett. 110, 048103 (2013)CrossRefADSGoogle Scholar
  30. 30.
    S. Fürthauer, S. Ramaswamy, Phys. Rev. Lett. 111, 238102 (2013)CrossRefADSGoogle Scholar
  31. 31.
    Y. Bouligand, C.R. Chimie 11, 281 (2008)CrossRefGoogle Scholar
  32. 32.
    Y. Bouligand, M.O. Soyer, S. Puiseux-Dao, Chromosoma 24, 251 (1968)CrossRefGoogle Scholar
  33. 33.
    Y. Bouligand, J. Phys. (Paris) Colloq. 30, C4-90 (1969)CrossRefGoogle Scholar
  34. 34.
    Y. Bouligand, Tissue Cell 4, 189 (1972)CrossRefGoogle Scholar
  35. 35.
    C. Robinson, Tetrahedron 13, 219 (1961)CrossRefGoogle Scholar
  36. 36.
    C. Robinson, Mol. Cryst. 1, 467 (1966)CrossRefGoogle Scholar
  37. 37.
    Y. Bouligand, Liquid Crystalline Order in Biological Materials, in Liquid Crystalline Order in Polymers, edited by A. Blumstein (Academic Press, New York, 1978)Google Scholar
  38. 38.
    F. Livolant, Tissue Cell 16, 535 (1984)CrossRefGoogle Scholar
  39. 39.
    F. Livolant, J. Phys. (Paris) 47, 1605 (1986)CrossRefGoogle Scholar
  40. 40.
    F. Livolant, Physica A 176, 117 (1991)CrossRefADSGoogle Scholar
  41. 41.
    T.E. Strzelecka, M.W. Davidson, R.L. Rill, Nature 331, 456 (1988)CrossRefADSGoogle Scholar
  42. 42.
    Yu.M. Yevdokimov, S.G. Skuridin, V.I. Salyanov, Liq. Cryst. 3, 1443 (1988)CrossRefGoogle Scholar
  43. 43.
    J.-F. Revol, H. Bradford, J. Giasson, R.H. Marchessault, D.G. Gray, Int. J. Biol. Macromol. 14, 170 (1992)CrossRefGoogle Scholar
  44. 44.
    J.-F. Revol, R.H. Marchessault, Int. J. Biol. Macromol. 15, 329 (1993)CrossRefGoogle Scholar
  45. 45.
    J. Lapointe, D.A. Marvin, Mol. Cryst. Liq. Cryst. 19, 269 (1973)CrossRefGoogle Scholar
  46. 46.
    Z. Dogic, S. Fraden, Langmuir 16, 7820 (2000)CrossRefGoogle Scholar
  47. 47.
    Z. Dogic, S. Fraden, Curr. Opin. Coll. Interface Sci. 11, 47 (2006)CrossRefGoogle Scholar
  48. 48.
    J. Arsuaga, M. Vazquez, P. McGuirk, S. Trigueros, D.W. Sumners, J. Roca, Proc. Natl. Acad. Sci. U.S.A. 102, 9165 (2005)CrossRefADSGoogle Scholar
  49. 49.
    D. Marenduzzo, E. Orlandini, A. Stasiak, D.W. Sumners, L. Tubiani, C. Micheletti, Proc. Natl. Acad. Sci. U.S.A. 106, 22269 (2009)CrossRefADSGoogle Scholar
  50. 50.
    A.A. Michelson, Philos. Mag. 21, 554 (1911)CrossRefGoogle Scholar
  51. 51.
    V. Sharma, M. Crne, J.O. Park, M. Srinivasarao, Science 325, 449 (2009)CrossRefADSGoogle Scholar
  52. 52.
    F. Zsila, J. Deli, M. Simonyi, Planta 213, 937 (2001)CrossRefGoogle Scholar
  53. 53.
    S. Vignolini, P.J. Rudall, A.V. Rowland, A. Reed, E. Moyroud, R.B. Faden, J.J. Baumberg, B.J. Glover, U. Steiner, Proc. Natl. Acad. Sci. U.S.A. 109, 15712 (2012)CrossRefADSGoogle Scholar
  54. 54.
    P.J. Willcox, S.P. Gido, W. Muller, D.L. Kaplan, Macromolecules 29, 5106 (1996)CrossRefADSGoogle Scholar
  55. 55.
    A. Leforstier, F. Livolant, Liq. Cryst. 17, 651 (1994)CrossRefGoogle Scholar
  56. 56.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Oxford University Press, Oxford, 1993)Google Scholar
  57. 57.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)Google Scholar
  58. 58.
    J. Toner, D.R. Nelson, Phys. Rev. B 23, 316 (1981)MathSciNetCrossRefADSGoogle Scholar
  59. 59.
    T.C. Lubensky, Phys. Rev. A 6, 452 (1972)CrossRefADSGoogle Scholar
  60. 60.
    W. Helfrich, Appl. Phys. Lett. 17, 531 (1970)CrossRefADSGoogle Scholar
  61. 61.
    J.P. Hurault, J. Chem. Phys. 59, 2068 (1973)CrossRefADSGoogle Scholar
  62. 62.
    N.A. Clark, R.B. Meyer, Appl. Phys. Lett. 22, 493 (1973)CrossRefADSGoogle Scholar
  63. 63.
    W. Helfrich, Phys. Rev. Lett. 23, 372 (1969)CrossRefADSGoogle Scholar
  64. 64.
    D. Marenduzzo, E. Orlandini, J.M. Yeomans, Phys. Rev. Lett. 92, 188301 (2004)CrossRefADSGoogle Scholar
  65. 65.
    D. Marenduzzo, E. Orlandini, M.E. Cates, J.M. Yeomans, Phys. Rev. E 76, 031921 (2007)CrossRefADSGoogle Scholar
  66. 66.
    R. Voituriez, J.-F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)CrossRefADSGoogle Scholar
  67. 67.
    S.P. Thampi, R. Golestanian, J.M. Yeomans, Philos. Trans. R. Soc. A 372, 20130366 (2014)CrossRefADSGoogle Scholar
  68. 68.
    S.P. Thampi, R. Golestanian, J.M. Yeomans, EPL 105, 18001 (2014)CrossRefADSGoogle Scholar
  69. 69.
    L. Giomi, Phys. Rev. X 5, 031003 (2015)Google Scholar
  70. 70.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)CrossRefADSGoogle Scholar
  71. 71.
    S. Ramaswamy, M. Rao, New J. Phys. 9, 423 (2007)CrossRefADSGoogle Scholar
  72. 72.
    M.E. Cates, O. Henrich, D. Marenduzzo, K. Stratford, Soft Matter 5, 3791 (2009)CrossRefADSGoogle Scholar
  73. 73.
    A. Tiribocchi, G. Gonnella, D. Marenduzzo, E. Orlandini, Soft Matter 7, 3295 (2011)CrossRefADSGoogle Scholar
  74. 74.
    A. Tiribocchi, M.E. Cates, G. Gonnella, D. Marenduzzo, E. Orlandini, Soft Matter 9, 4831 (2013)CrossRefADSGoogle Scholar
  75. 75.
    E. Tjhung, D. Marenduzzo, M.E. Cates, Proc. Natl. Acad. Sci. U.S.A. 109, 12381 (2012)CrossRefADSGoogle Scholar
  76. 76.
    E. Tjhung, M.E. Cates, D. Marenduzzo, Soft Matter 7, 7453 (2011)CrossRefADSGoogle Scholar
  77. 77.
    S. Sankararaman, G.I. Menon, P.B.S. Kumar, Phys. Rev. E 70, 031905 (2004)CrossRefADSGoogle Scholar
  78. 78.
    B.I. Senyuk, I.I. Smalyukh, O.D. Lavrentovich, Phys. Rev. E 74, 011712 (2006)CrossRefADSGoogle Scholar
  79. 79.
    L.M. Pismen, Phys. Rev. E 88, 050502(R) (2013)CrossRefADSGoogle Scholar
  80. 80.
    L. Giomi, M.J. Bowick, X. Ma, M.C. Marchetti, Phys. Rev. Lett. 110, 228101 (2013)CrossRefADSGoogle Scholar
  81. 81.
    K. Kawaguchi, R. Kageyama, M. Sano, Topological defect launches 3D mound in the active nematic sheet of neural progenitors, arXiv:1605.06470 [cond-mat.soft]
  82. 82.
    A. Doostmohammadi, M.F. Adamer, S.P. Thampi, J.M. Yeomans, Nat. Commun. 7, 10557 (2016)CrossRefADSGoogle Scholar
  83. 83.
    D.A. Beller, T. Machon, S. Čopar, D.M. Sussman, G.P. Alexander, R.D. Kamien, R.A. Mosna, Phys. Rev. X 4, 031050 (2014)Google Scholar
  84. 84.
    T. Machon, G.P. Alexander, Phys. Rev. X 6, 011033 (2016)Google Scholar
  85. 85.
    M.V. Berry, J.H. Hannay, J. Phys. A.: Math. Gen. 10, 1809 (1977)CrossRefADSGoogle Scholar
  86. 86.
    S.J. DeCamp, G.S. Redner, A. Baskaran, M.F. Hagan, Z. Dogic, Nat. Mater. 14, 1110 (2015)CrossRefADSGoogle Scholar
  87. 87.
    E. Putzig, G.S. Redner, A. Baskaran, A. Baskaran, Soft Matter 12, 3854 (2016)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Carl A. Whitfield
    • 1
  • Tapan Chandra Adhyapak
    • 2
  • Adriano Tiribocchi
    • 3
  • Gareth P. Alexander
    • 1
    • 4
  • Davide Marenduzzo
    • 5
  • Sriram Ramaswamy
    • 6
    • 7
  1. 1.Department of PhysicsUniversity of WarwickCoventryUK
  2. 2.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Dipartimento di Fisica e AstronomiaUniversità di PadovaPadovaItaly
  4. 4.Centre for Complexity ScienceUniversity of WarwickCoventryUK
  5. 5.SUPA, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
  6. 6.TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental ResearchNarsingi, HyderabadIndia
  7. 7.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations