Numerical determination of shear stress relaxation modulus of polymer glasses

  • I. Kriuchevskyi
  • J. P. Wittmer
  • O. Benzerara
  • H. Meyer
  • J. Baschnagel
Tips and Tricks

Abstract.

Focusing on simulated polymer glasses well below the glass transition, we confirm the validity and the efficiency of the recently proposed simple-average expression \(G(t) = \mu_{A}- h(t)\) for the computational determination of the shear stress relaxation modulus G(t). Here, \(\mu_{A}= G(0)\) characterizes the affine shear transformation of the system at t = 0 and h(t) the mean-square displacement of the instantaneous shear stress as a function of time t. This relation is seen to be particulary useful for systems with quenched or sluggish transient shear stresses which necessarily arise below the glass transition. The commonly accepted relation \( G(t)=c(t)\) using the shear stress auto-correlation function c(t) becomes incorrect in this limit.

Graphical abstract

Keywords

Tips and Tricks 

References

  1. 1.
    M. Rubinstein, R. Colby, Polymer Physics (Oxford University Press, Oxford, 2003)Google Scholar
  2. 2.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)Google Scholar
  3. 3.
    J. Hansen, I. McDonald, Theory of Simple Liquids, 3nd edition (Academic Press, New York, 2006)Google Scholar
  4. 4.
    M. Allen, D. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1994)Google Scholar
  5. 5.
    J.P. Wittmer, H. Xu, J. Baschnagel, Phys. Rev. E 91, 022107 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    J.P. Wittmer, H. Xu, O. Benzerara, J. Baschnagel, Mol. Phys. 113, 2881 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Wittmer, I. Kriuchevskyi, J. Baschnagel, H. Xu, Eur. Phys. J. B 88, 242 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Wittmer, H. Xu, J. Baschnagel, Phys. Rev. E 93, 012103 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Wittmer, I. Kriuchevskyi, A. Cavallo, H. Xu, J. Baschnagel, Phys. Rev. E 93, 062611 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    C. Klix, F. Ebert, F. Weysser, M. Fuchs, G. Maret, P. Keim, Phys. Rev. Lett. 109, 178301 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    E. Flenner, G. Szamel, Phys. Rev. Lett. 107, 105505 (2015)Google Scholar
  12. 12.
    D.R. Squire, A.C. Holt, W.G. Hoover, Physica 42, 388 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    J.F. Lutsko, J. Appl. Phys. 64, 1152 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    J.L. Barrat, J.N. Roux, J.P. Hansen, M.L. Klein, Europhys. Lett. 7, 707 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Wittmer, A. Tanguy, J.L. Barrat, L. Lewis, Europhys. Lett. 57, 423 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.L. Barrat, Microscopic Elasticity of Complex Systems, in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, edited by M. Ferrario, G. Ciccotti, K. Binder, Vol. 704 (Springer, Berlin, Heidelberg, 2006) pp. 287--307Google Scholar
  17. 17.
    B. Schnell, H. Meyer, C. Fond, J.P. Wittmer, J. Baschnagel, Eur. Phys. J. E 34, 97 (2011)CrossRefGoogle Scholar
  18. 18.
    J.P. Wittmer, H. Xu, P. Polińska, F. Weysser, J. Baschnagel, J. Chem. Phys. 138, 12A533 (2013)CrossRefGoogle Scholar
  19. 19.
    S.J. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    S. Frey, F. Weysser, H. Meyer, J. Farago, M. Fuchs, J. Baschnagel, Eur. Phys. J. E 38, 11 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Baschnagel, I. Kriuchevskyi, J. Helfferich, C. Ruscher, H. Meyer, O. Benzerara, J. Farago, J. Wittmer, Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations and to Comparisons With Mode-Coupling Theory, in Polymer Glasses, edited by C. Roth (Taylor & Francis, 2016) p. 153Google Scholar
  22. 22.
    H. Xu, J. Wittmer, P. Polińska, J. Baschnagel, Phys. Rev. E 86, 046705 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    D. Li, H. Xu, J.P. Wittmer, J. Phys.: Condens. Matter 28, 045101 (2016)ADSGoogle Scholar
  24. 24.
    J.P. Wittmer, I. Kriuchevskyi, J. Baschnagel, in preparation (2017)Google Scholar
  25. 25.
    H. Goldstein, J. Safko, C. Poole, Classical Mechanics, 3nd edition (Addison-Wesley, 2001)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • I. Kriuchevskyi
    • 1
  • J. P. Wittmer
    • 1
  • O. Benzerara
    • 1
  • H. Meyer
    • 1
  • J. Baschnagel
    • 1
  1. 1.Institut Charles SadronUniversité de Strasbourg & CNRSStrasbourg CedexFrance

Personalised recommendations