Advertisement

Measuring the solubility of solids in non-solvents: case of polystyrene in alkanes

  • F. -Y. Lin
  • W. S. R. Forrest
  • C. R. Daley
  • Y. Chai
  • J. A. ForrestEmail author
Tips and Tricks

Abstract.

We introduce a simple and sensitive technique for measuring extremely low solubilities with a small sample size and small solvent volume. This technique involves measuring the decrease in the thickness of a supported thin film after exposure to a drop of known volume of solvent and removal of the solution. The feasibility of measuring very small changes in film thickness directly translates to the ability to measure extremely low solubility while at the same time using only μL of solvent. We apply the technique to the case of polystyrene with Mw values in the range 2500 g/mol to 22200 g/mol in alkane solvents and show that we can easily measure a solubility of 0.1 g/L using only 1\( \mu\) g of material and 3\( \mu\) L of solvent for each sample.

Graphical abstract

Keywords

Tips and Tricks 

References

  1. 1.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979)Google Scholar
  2. 2.
    S.T. Milner, M.-D. Lacasse, W.W. Graessley, Macromolecules 42, 876 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer Handbook, 4th edition (John Wiley and Sons, 1999)Google Scholar
  4. 4.
    H.M.A. Ehmann, S. Winter, T. Griesser, R. Keimel, S. Schrank, A. Zimmer, O. Werzer, Pharm. Res. 31, 2708 (2014)CrossRefGoogle Scholar
  5. 5.
    S.B. Murdande, M.J. Pikal, R.M. Shanker, R.H. Bogner, Pharm. Res. 27, 2704 (2010)CrossRefGoogle Scholar
  6. 6.
    B.C. Hancock, M. Parks, Pharm. Res. 17, 397 (2000)CrossRefGoogle Scholar
  7. 7.
    B.D. Grant, N.J. Clecak, R.J. Twieg, C.G. Willson, IEEE Trans. Electron Dev. 28, 1300 (1981)CrossRefGoogle Scholar
  8. 8.
    T. Iwayanagi, T. Kohashi, S. Nonogaki, T. Matsuzawa, K. Douta, H. Yanazawa, IEEE Trans. Electron Dev. 28, 1306 (1981)CrossRefGoogle Scholar
  9. 9.
    D.W. Schubert, T. Dunkel, Mater. Res. Innov. 7, 314 (2003)CrossRefGoogle Scholar
  10. 10.
    G. Sauerbrey, Z. Phys. 155, 206 (1959)ADSCrossRefGoogle Scholar
  11. 11.
    C.M. Kok, A. Rudin, J. Appl. Polym. Sci. 27, 353 (1982)CrossRefGoogle Scholar
  12. 12.
    K.A. Marx, Biomacromolecules 4, 1099 (2003)CrossRefGoogle Scholar
  13. 13.
    D. Johannsmann, The Quartz Crystal Microbalance in Soft Matter Research (Springer, 2015)Google Scholar
  14. 14.
    J.S. Papanu, D.S. Soane, A.T. Bell, D.W. Hess, J. Appl. Polym. Sci. 38, 859 (1989)CrossRefGoogle Scholar
  15. 15.
    Ö. Pekcan, S. Ugur, Polymer 43, 1937 (2002)CrossRefGoogle Scholar
  16. 16.
    F. Asmussen, K. Ueberreiter, J. Polym. Sci. 57, 187 (1962)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • F. -Y. Lin
    • 1
  • W. S. R. Forrest
    • 1
  • C. R. Daley
    • 1
  • Y. Chai
    • 1
  • J. A. Forrest
    • 1
    • 2
    Email author
  1. 1.Department of Physics & AstronomyUniversity of WaterlooOntarioCanada
  2. 2.Perimeter Institute for Theoretical physicsOntarioCanada

Personalised recommendations