Advertisement

Applicability of effective pair potentials for active Brownian particles

  • Markus Rein
  • Thomas SpeckEmail author
Regular Article
Part of the following topical collections:
  1. Nonequilibrium Collective Dynamics in Condensed and Biological Matter

Abstract.

We have performed a case study investigating a recently proposed scheme to obtain an effective pair potential for active Brownian particles (Farage et al., Phys. Rev. E 91, 042310 (2015)). Applying this scheme to the Lennard-Jones potential, numerical simulations of active Brownian particles are compared to simulations of passive Brownian particles interacting by the effective pair potential. Analyzing the static pair correlations, our results indicate a limited range of activity parameters (speed and orientational correlation time) for which we obtain quantitative, or even qualitative, agreement. Moreover, we find a qualitatively different behavior for the virial pressure even for small propulsion speeds. Combining these findings we conclude that beyond linear response active particles exhibit genuine non-equilibrium properties that cannot be captured by effective pair interaction alone.

Graphical abstract

Keywords

Topical Issue: Nonequilibrium Collective Dynamics in Condensed and Biological Matter 

References

  1. 1.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Fily, M.C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    G.S. Redner, M.F. Hagan, A. Baskaran, Phys. Rev. Lett. 110, 055701 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    J. Bialké, H. Löwen, T. Speck, EPL 103, 30008 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A. Wysocki, R.G. Winkler, G. Gompper, EPL 105, 48004 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M.E. Cates, J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M.E. Cates, D. Marenduzzo, A.N. Morozov, W.C.K. Poon, Proc. Natl. Acad. Sci. U.S.A. 109, 4052 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    G.S. Redner, A. Baskaran, M.F. Hagan, Phys. Rev. E 88, 012305 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    B.M. Mognetti, A. Sarić, S. Angioletti-Uberti, A. Cacciuto, C. Valeriani, D. Frenkel, Phys. Rev. Lett. 111, 245702 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    E. Mani, H. Löwen, Phys. Rev. E 92, 032301 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    S.C. Takatori, J.F. Brady, Phys. Rev. E 91, 032117 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    M.E. Cates, J. Tailleur, EPL 101, 20010 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    T. Speck, A.M. Menzel, J. Bialké, H. Löwen, J. Chem. Phys. 142, 224109 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    X. Yang, M.L. Manning, M.C. Marchetti, Soft Matter 10, 6477 (2014)CrossRefGoogle Scholar
  18. 18.
    S.C. Takatori, W. Yan, J.F. Brady, Phys. Rev. Lett. 113, 028103 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R.G. Winkler, A. Wysocki, G. Gompper, Soft Matter 11, 6680 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A.P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M.E. Cates, J. Tailleur, Phys. Rev. Lett. 114, 198301 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    J. Bialké, J.T. Siebert, H. Löwen, T. Speck, Phys. Rev. Lett. 115, 098301 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    L. Berthier, J. Kurchan, Nat. Phys. 9, 310 (2013)CrossRefGoogle Scholar
  23. 23.
    T.F.F. Farage, P. Krinninger, J.M. Brader, Phys. Rev. E 91, 042310 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    R.F. Fox, Phys. Rev. A 33, 467 (1986)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    R.F. Fox, Phys. Rev. A 34, 4525 (1986)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    C. Maggi, U.M.B. Marconi, N. Gnan, R. Di Leonardo, Sci. Rep. 5, 10742 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    U.M.B. Marconi, M. Paoluzzi, C. Maggi, Mol. Phys. 114, 2400 (2016)CrossRefGoogle Scholar
  28. 28.
    P. Jung, P. Hänggi, Phys. Rev. A 35, 4464 (1987)ADSCrossRefGoogle Scholar
  29. 29.
    P. Hänggi, P. Jung, Adv. Chem. Phys. 89, 239 (1995)ADSGoogle Scholar
  30. 30.
    U.M.B. Marconi, C. Maggi, Soft Matter 11, 8768 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    E. Fodor, C. Nardini, M.E. Cates, J. Tailleur, P. Visco, F. van Wijland, arXiv:1604.00953 (2016)
  33. 33.
    M.E. Cates, C. Nardini, Colored noise models of active particles, http://www.condmatjournalclub.org/?p=2690
  34. 34.
    F. Sciortino, S. Mossa, E. Zaccarelli, P. Tartaglia, Phys. Rev. Lett. 93, 055701 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations