Motion planning and motility maps for flagellar microswimmers

Regular Article

Abstract.

We study two microswimmers consisting of a spherical rigid head and a passive elastic tail. In the first one the tail is clamped to the head, and the system oscillates under the action of an external torque. In the second one, head and tail are connected by a joint allowing the angle between them to vary periodically, as a result of an oscillating internal torque. Previous studies on these models were restricted to sinusoidal actuations, showing that the swimmers can propel while moving on average along a straight line, in the direction given by the symmetry axis around which beating takes place. We extend these results to motions produced by generic (non-sinusoidal) periodic actuations within the regime of small compliance of the tail. We find that modulation in the velocity of actuation can provide a mechanism to select different directions of motion. With velocity-modulated inputs, the externally actuated swimmer can translate laterally with respect to the symmetry axis of beating, while the internally actuated one is able to move along curved trajectories. The governing equations are analysed with an asymptotic perturbation scheme, providing explicit formulas, whose results are expressed through motility maps. Asymptotic approximations are further validated by numerical simulations.

Graphical abstract

Keywords

Living systems: Biomimetic Systems 

References

  1. 1.
    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 7060 (2005)CrossRefGoogle Scholar
  2. 2.
    O.S. Pak, W. Gao, J. Wang, E. Lauga, Soft Matter 7, 8169 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    H. Gadelha, E.A. Gaffney, D.J. Smith, J.C. Kirkman-Brown, J. R. Soc. Interf. 7, 1689 (2010)CrossRefGoogle Scholar
  4. 4.
    J.S. Guasto, R. Rusconi, R. Stocker, Annu. Rev. Fluid Mech. 44, 373 (2012)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    K.E. Machin, J. Exp. Biol. 35, 796 (1958)Google Scholar
  7. 7.
    C.H. Wiggins, D. Riveline, A. Ott, R.E. Goldstein, Biophys. J. 74, 1043 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Wiggins, R.E. Goldstein, Phys. Rev. Lett. 80, 3879 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    E. Lauga, Phys. Rev. E 75, 041916 (2007)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    J.J. Abbott, K.E. Peyer, M.C. Lagomarsino, L. Zhang, L. Dong, I.K. Kaliakatsos, B.J. Nelson, Int. J. Robot. Res. 28, 1434 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Gadelha, Regul. Chaotic Dyn. 18, 75 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    E. Passov, Y. Or, Eur. Phys. J. E 35, 1 (2012)CrossRefGoogle Scholar
  13. 13.
    E. Gutman, Y. Or, Phys. Rev. E 90, 013012 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    E.E. Keaveny, M.R. Maxey, J. Fluid Mech. 598, 293 (2008)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. DeSimone, A. Tatone, Eur. Phys. J. E 35, 85 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Desimone, L. Heltai, F. Alouges, A. Lefebvre-Lepot, Computing optimal strokes for low Reynolds number swimmers, in Natural Locomotion in Fluids and on Surfaces (Springer, New York, 2012) p. 177Google Scholar
  17. 17.
    Y.W. Kim, R.R. Netz, Phys. Rev. Lett. 96, 158101 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    F. Alouges, A. DeSimone, L. Giraldi, M. Zoppello, Soft. Robot. 2, 117 (2015)CrossRefGoogle Scholar
  19. 19.
    L.J. Burton, R.L. Hatton, H. Choset, A.E. Hosoi, Phys. Fluids 22, 091703 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    C. Brennen, W. Howard, Annu. Rev. Fluid Mech. 9, 1 (1977)CrossRefGoogle Scholar
  21. 21.
    R.G. Cox, J. Fluid Mech. 44, 04 (1970)CrossRefGoogle Scholar
  22. 22.
    A.K. Tornberg, M.J. Shelley, J. Comput. Phys. 196, 1 (2004)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J.M. Coron, Control and nonlinearity (American Mathematical Society, 2007)Google Scholar
  24. 24.
    S.D. Kelly, R.M. Murray, J. Robot. Syst. 12, 6 (1995)CrossRefGoogle Scholar
  25. 25.
    A. Montino, A. DeSimone, Eur. Phys. J. E 38, 5 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.SISSAInternational School for Advanced StudiesTriesteItaly

Personalised recommendations