Stability of uniform vertical flow through a close porous filter in the presence of solute immobilization

  • Boris S. MaryshevEmail author
  • Tatyana P. Lyubimova
Regular Article


In the present paper we consider slow filtration of a mixture through a close porous filter. The heavy solute penetrates slowly into the porous filter due to the external vertical filtration flow and diffusion. This process is accompanied by the formation of the domain with heavy fluid near the upper boundary of the filter. The developed stratification, at which the heavy fluid is located above the light fluid, is unstable. When the mass of the heavy fluid exceeds the critical value, one can observe the onset of the Rayleigh-Taylor instability. Due to the above peculiarities we can distinguish between two regimes of vertical filtration: 1) homogeneous seepage and 2) convective filtration. When considering the filtration process it is necessary to take into account the diffusion accompanied by the immobilization effect (or sorption) of the solute. The immobilization is described by the linear MIM (mobile/immobile media) model. It has been shown that the immobilization slows down the process of forming the unstable stratification. The purpose of the paper is to find the stability conditions for homogeneous vertical seepage of he solute into the close porous filter. The linear stability problem is solved using the quasi-static approach. The critical times of instability are estimated. The stability maps are plotted in the space of system parameters. The applicability of quasi-static approach is substantiated by direct numerical simulation of the full nonlinear equations.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 


  1. 1.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, in Dover Books on Physics Series (Dover Publications, 1961)Google Scholar
  2. 2.
    F. Hattori, H. Takabe, K. Mima, Phys. Fluids 29, 1719 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    H. Kull, Phys. Rep. 206, 197 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    R.C. Sharma, n. Sunil, J. Plasma Phys. 55, 35 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    H. Kalisch, D. Mitrovic, J.M. Nordbotten, Continuum Mech. Thermodyn. 28, 721 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Ivantsov, T. Lyubimova, J. Phys.: Conf. Ser. 681, 012040 (2016)ADSGoogle Scholar
  7. 7.
    A. Riaz, M. Hesse, H.A. Tchelepi, F.M. Orr, J. Fluid Mech. 548, 87 (2006)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    X. Xiaofeng, C. Shiyi, Z. Dongxiao, Adv. Water Res. 29, 397 (2006)CrossRefGoogle Scholar
  9. 9.
    A.C. Slim, J. Fluid Mech. 741, 461 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    H. Hassanzadeh, M. Pooladi-Darvish, D. Keith, Trans. Porous Media 65, 193 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Rees, A. Selim, J. Ennis-King, The Instability of Unsteady Boundary Layers in Porous Media (Springer, Netherlands, 2008) pp. 82--110Google Scholar
  12. 12.
    R. Wooding, J. Fluid Mech. 9, 183 (1960)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Noghrehabadi, D.A.S. Rees, A.P. Bassom, Trans. Porous Media 99, 493 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M.C. Kim, C.K. Choi, Phys. Fluids 24, 044102 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    P.M. Patil, D.A.S. Rees, Trans. Porous Media 99, 207 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Lyubimov, T. Lyubimova, S. Amiroudine, D. Beysens, Eur. Phys. J. ST 192, 129 (2011)CrossRefGoogle Scholar
  17. 17.
    P. Gresho, R. Sani, Int. J. Heat Mass Transf. 14, 207 (1971)CrossRefGoogle Scholar
  18. 18.
    H. Deans et al., Soc. Petrol. Engin. J. 3, 49 (1963)CrossRefGoogle Scholar
  19. 19.
    M.Th. Van Genuchten, P.J. Wierenga, Soil Sci. Soc. Am. J. 40, 473 (1976)CrossRefGoogle Scholar
  20. 20.
    F.T. Lindstrom, R. Haque, V.H. Freed, L. Boersma, Environ. Sci. Technol. 1, 561 (1967)ADSCrossRefGoogle Scholar
  21. 21.
    H. Selim, M. Amacher, Reactivity and Transport of Heavy Metals in Soils, (Taylor & Francis, 1996)Google Scholar
  22. 22.
    M. Bromly, C. Hinz, Water Resour. Res. 40, W07402 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    P. Gouze, T. Le Borgne, R. Leprovost, G. Lods, T. Poidras, P. Pezard, Water Resour. Res. 44, W06426 (2008)ADSGoogle Scholar
  24. 24.
    R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer, Water Resour. Res. 39, WR002141 (2003)CrossRefGoogle Scholar
  25. 25.
    B. Maryshev, M. Joelson, D. Lyubimov, T. Lyubimova, M.C. Néel, J. Phys. A: Math. Theor. 42, 115001 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    B. Maryshev, A. Cartalade, C. Latrille, M. Joelson, M. Néel, Comp. Math. Appl. 66, 630 (2013)CrossRefGoogle Scholar
  27. 27.
    B.S. Maryshev, T.P. Lyubimova, D.V. Lyubimov, Transp. Porous Media 65, 193 (2016)MathSciNetGoogle Scholar
  28. 28.
    R.D. Harter, D.E. Baker, Soil Sci. Soc. Am. J. 41, 1077 (1977)CrossRefGoogle Scholar
  29. 29.
    H. Darcy, Les fontaines publiques de la ville de Dijon (Victor Dalmont, 1856)Google Scholar
  30. 30.
    D. Nield, A. Bejan, Convection in Porous Media (Springer, 2012)Google Scholar
  31. 31.
    C. Latrille, M. Néel, EPJ Web of Conferences 50, 04002 (2013)CrossRefGoogle Scholar
  32. 32.
    M.A. Goldshtik, V.N. Stern, Hydrodynamic stability and turbulence (Nauka, Novosibirsk, 1977) (in Russian)Google Scholar
  33. 33.
    C. Van Duijn, G. Pieters, R. Wooding, A. van der Ploeg, Stability Criteria for the Vertical Boundary Layer Formed by Throughflow Near the Surface of a Porous Medium (American Geophysical Union, 2002) pp. 155--169Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Continuous Media Mechanics Ural Branch of Russian Academy of SciencePermRussia
  2. 2.Perm State UniversityPermRussia

Personalised recommendations