Effect of Gaussian curvature modulus on the shape of deformed hollow spherical objects

  • C. QuillietEmail author
  • A. Farutin
  • P. Marmottant
Regular Article


A popular description of soft membranes uses the surface curvature energy introduced by Helfrich, which includes a spontaneous curvature parameter. In this paper we show how the Helfrich formula can also be of interest for a wider class of spherical elastic surfaces, namely with shear elasticity, and likely to model other deformable hollow objects. The key point is that when a stress-free state with spherical symmetry exists before subsequent deformation, its straightforwardly determined curvature (“geometrical spontaneous curvature”) differs most of the time from the Helfrich spontaneous curvature parameter that should be considered in order to have the model being correctly used. Using the geometrical curvature in a set of independent parameters unveils the role of the Gaussian curvature modulus, which appears to play on the shape of an elastic surface even though this latter is closed, contrary to what happens for surfaces without spontaneous curvature. In appendices, clues are given to apply this alternative and convenient formulation of the elastic surface model to the particular case of thin spherical shells of isotropic material (TSSIMs).

Graphical abstract


Soft Matter: Self-organisation and Supramolecular Assemblies 


  1. 1.
    G.M. Whitesides, Nature 442, 368 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75, 016601 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    S. Kuriakose, P. Dimitrakopoulos, Phys. Rev. E 84, 011906 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S.S. Datta, S.-H. Kim, J. Paulose, A. Abbaspourrad, D.R. Nelson, D.A. Weitz, Phys. Rev. Lett. 109, 134302 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    L. Landau, E.M. Lifschitz, Theory of elasticity, 3rd ed. (Elsevier Butterworth-Heinemann, Oxford, 1986)Google Scholar
  6. 6.
    M. Ben Amar, Y. Pomeau, Proc. R. Soc. London, Ser. A 253, 411 (1997)Google Scholar
  7. 7.
    W. Helfrich, Z. Naturforsch. C 28, 693 (1973)Google Scholar
  8. 8.
    C.I. Zoldesi, C.A. van Walree, A. Imhof, Langmuir 22, 4343 (2006)CrossRefGoogle Scholar
  9. 9.
    T.A. Kolesnikova, A.G. Skirtach, H. Möhwald, Expert Opin. Drug Deliv. 10, 47 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Fery, R. Weinkamer, Polymer 48, 7221 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Meille, E.J. Garboczi, Modelling Simul. Mater. Sci. Eng. 9, 371 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    F. Quéméneur, C. Quilliet, M. Faivre, A. Viallat, B. Pépin-Donat, Phys. Rev. Lett. 108, 108303 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    K. Brakke, Exp. Math. 1, 141 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Lidmar, L. Mirny, D.R. Nelson, Phys. Rev. E 68, 0519010 (2003)CrossRefGoogle Scholar
  15. 15.
    H.-T. Jung, S.Y. Lee, E.W. Kaler, B. Coldren, J.A. Zasadzinski, Proc. Nat. Acad. Sci. U.S.A. 99, 15318 (2002)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    H.S. Seung, D.R. Nelson, Phys. Rev. Lett. E 38, 1005 (1988)ADSGoogle Scholar
  17. 17.
    A. Sakashita, N. Urakami, P. Ziherl, M. Imai, Soft Matter 8, 8569 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    R. Mukhopadhyay, G. Lim, M. Wortis, Biophys. J. 82, 1756 (2002)CrossRefGoogle Scholar
  19. 19.
    W. Wintz, H.-G. Döbereiner, U. Seifert, Europhys. Lett. 33, 403 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    C. Quilliet, Eur. Phys. J. E 35, 48 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Komura, K. Tamura, T. Kato, Eur. J. Phys. E 18, 343 (2005)CrossRefGoogle Scholar
  22. 22.
    H.-G. Döbereiner, E. Evans, I. Kraus, U. Seifert, M. Wortis, Phys. Rev. E 55, 4458 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Kralchevsky, T.D. Gurkov, K.J. Nagayama, J. Colloid Interface Sci. 180, 169 (1996)CrossRefGoogle Scholar
  24. 24.
    J. Israelachvili, Intermolecular & surface forces, 2nd ed., section 17.8 (Academic Press, 2007)Google Scholar
  25. 25.
    W.K. Kegel, J. Groenewold, Phys. Rev. E 80, 030401 R (2009)ADSCrossRefGoogle Scholar
  26. 26.
    F.I. Niordson, Shell theory (Elsevier, Amsterdam, 1985)Google Scholar
  27. 27.
    W. Pietraszkiewicz, Arch. Mech. 26, 221 (1974)MathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CNRSUniversité Grenoble AlpesGrenobleFrance

Personalised recommendations